opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoilMultiSegment_impl.hpp

270 lines
12 KiB
C++
Raw Normal View History

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2014 IRIS AS
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
namespace Opm
{
template <class GridT>
auto SimulatorFullyImplicitBlackoilMultiSegment<GridT>::
createSolver(const Wells* wells, std::vector<WellMultiSegmentConstPtr>& wells_multisegment)
-> std::unique_ptr<Solver>
{
typedef typename Traits::Model Model;
auto model = std::unique_ptr<Model>(new Model(model_param_,
grid_,
props_,
geo_,
rock_comp_props_,
wells,
solver_,
eclipse_state_,
has_disgas_,
has_vapoil_,
terminal_output_,
wells_multisegment));
if (!Base::threshold_pressures_by_face_.empty()) {
model->setThresholdPressures(Base::threshold_pressures_by_face_);
}
return std::unique_ptr<ThisType::Solver>(new Solver(Base::solver_param_, std::move(model)));
}
template <class GridT>
SimulatorReport SimulatorFullyImplicitBlackoilMultiSegment<GridT>::run(SimulatorTimer& timer,
ReservoirState& state)
{
WellState prev_well_state;
// Create timers and file for writing timing info.
Opm::time::StopWatch solver_timer;
double stime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
// adaptive time stepping
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
if( param_.getDefault("timestep.adaptive", true ) )
{
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
}
// init output writer
output_writer_.writeInit( timer );
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
if( ! restorefilename.empty() )
{
// -1 means that we'll take the last report step that was written
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep );
}
unsigned int totalNonlinearIterations = 0;
unsigned int totalLinearIterations = 0;
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
step_timer.start();
if ( terminal_output_ )
{
timer.report(std::cout);
}
// Create wells and well state.
WellsManager wells_manager(eclipse_state_,
timer.currentStepNum(),
Opm::UgGridHelpers::numCells(grid_),
Opm::UgGridHelpers::globalCell(grid_),
Opm::UgGridHelpers::cartDims(grid_),
Opm::UgGridHelpers::dimensions(grid_),
Opm::UgGridHelpers::cell2Faces(grid_),
Opm::UgGridHelpers::beginFaceCentroids(grid_),
props_.permeability(),
is_parallel_run_);
const Wells* wells = wells_manager.c_wells();
WellState well_state;
// well_state.init(wells, state, prev_well_state);
const std::vector<WellConstPtr>& wells_ecl = eclipse_state_->getSchedule()->getWells(timer.currentStepNum());
std::vector<WellMultiSegmentConstPtr> wells_multisegment(wells_ecl.size());
// wells_multisegment.resize(wells_ecl.size());
for (size_t i = 0; i < wells_multisegment.size(); ++i) {
wells_multisegment[i].reset(new WellMultiSegment(wells_ecl[i], timer.currentStepNum(), wells));
}
#if 0
// for DEBUGGING OUTPUT
std::cout << " the number of the wells from EclipseState " << wells_ecl.size() << std::endl;
for (size_t i = 0; i < wells_ecl.size(); ++i) {
std::cout << " well name " << wells_ecl[i]->name() << std::endl;
std::cout << " segment wells " << wells_ecl[i]->isMultiSegment() << std::endl;
}
std::cout << " output all the well information for debugging " << std::endl;
int nw = wells_multisegment.size();
for (int w = 0; w < nw; ++w) {
WellMultiSegmentConstPtr well = wells_multisegment[w];
std::cout << " well name " << well->name() << std::endl;
std::cout << " is mutli-segmented ? : " << well->isMultiSegmented() << std::endl;
std::cout << " number of segments : " << well->numberOfSegments() << std::endl;
std::cout << " number of perforations : " << well->numberOfPerforations() << std::endl;
std::cout << " beginning outputing segment informations " << std::endl;
for (int s = 0; s < well->numberOfSegments(); ++s) {
std::cout << " segment number : " << s << std::endl;
int n_perf_segment = well->segmentPerforations()[s].size();
std::cout << " number of perforations for this segment " << n_perf_segment << std::endl;
std::cout << " the depth of the segment " << well->segmentDepth()[s] << std::endl;
std::cout << " the length of the segment " << well->segmentLength()[s] << std::endl;
std::cout << " the volume of the segment " << well->segmentVolume()[s] << std::endl;
std::cout << " the roughness of the segment " << well->segmentRoughness()[s] << std::endl;
std::cout << " the cross area of the segment " << well->segmentCrossArea()[s] << std::endl;
std::cout << " its outletSegment " << well->outletSegment()[s] << std::endl;
std::cout << " the number of the inlet segments " << well->inletSegments()[s].size() << std::endl;
std::cout << " its inlet segments are ";
for (int inlet = 0; inlet < well->inletSegments()[s].size(); ++inlet) {
std::cout << well->inletSegments()[s][inlet] << " ";
}
std::cout << std::endl;
std::cout << " its perforations infromations " << std::endl;
for (int perf = 0; perf < n_perf_segment; ++perf) {
int perf_number = well->segmentPerforations()[s][perf];
std::cout << " perforation " << perf_number;
std::cout << " peforation depth " << well->perfDepth()[perf_number] << std::endl;;
}
std::cout << std::endl;
}
std::cout << " output all the mapping informations " << std::endl;
std::cout << " matrix s2p " << std::endl;
std::cout << well->wellOps().s2p << std::endl;
std::cout << " maxtrix p2s " << std::endl;
std::cout << well->wellOps().p2s << std::endl;
std::cout << " matrix p2s_average " << std::endl;
std::cout << well->wellOps().p2s_average << std::endl;
std::cout << " maxtrix s2s_gather " << std::endl;
std::cout << well->wellOps().s2s_gather << std::endl;
std::cout << " maxtrix p2s_gather " << std::endl;
std::cout << well->wellOps().p2s_gather << std::endl;
std::cout << " s2s_inlets " << std::endl;
std::cout << well->wellOps().s2s_inlets << std::endl;
std::cout << " s2s_outlet " << std::endl;
std::cout << well->wellOps().s2s_outlet << std::endl;
std::cout << " output well information for well " << well->name() << " done!!!! " << std::endl;
}
std::cin.ignore();
#endif
// DEBUGGING OUTPUT is DONE
well_state.init(wells_multisegment, state, prev_well_state);
// give the polymer and surfactant simulators the chance to do their stuff
Base::asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
// write simulation state at the report stage
output_writer_.writeTimeStep( timer, state, well_state );
// Max oil saturation (for VPPARS), hysteresis update.
props_.updateSatOilMax(state.saturation());
props_.updateSatHyst(state.saturation(), allcells_);
// Compute reservoir volumes for RESV controls.
Base::asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state);
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
auto solver = createSolver(wells, wells_multisegment);
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if( adaptiveTimeStepping ) {
adaptiveTimeStepping->step( timer, *solver, state, well_state, output_writer_ );
}
else {
// solve for complete report step
solver->step(timer.currentStepLength(), state, well_state);
}
// take time that was used to solve system for this reportStep
solver_timer.stop();
// accumulate the number of nonlinear and linear Iterations
totalNonlinearIterations += solver->nonlinearIterations();
totalLinearIterations += solver->linearIterations();
// Report timing.
const double st = solver_timer.secsSinceStart();
if ( terminal_output_ )
{
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
}
stime += st;
if ( output_writer_.output() ) {
SimulatorReport step_report;
step_report.pressure_time = st;
step_report.total_time = step_timer.secsSinceStart();
step_report.reportParam(tstep_os);
}
// Increment timer, remember well state.
++timer;
prev_well_state = well_state;
}
// Write final simulation state.
output_writer_.writeTimeStep( timer, state, prev_well_state );
// Stop timer and create timing report
total_timer.stop();
SimulatorReport report;
report.pressure_time = stime;
report.transport_time = 0.0;
report.total_time = total_timer.secsSinceStart();
report.total_newton_iterations = totalNonlinearIterations;
report.total_linear_iterations = totalLinearIterations;
return report;
}
} // namespace Opm