opm-simulators/opm/simulators/linalg/bda/cusparseSolverBackend.cu

500 lines
18 KiB
Plaintext
Raw Normal View History

/*
2019-12-05 07:24:37 -06:00
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __NVCC__
2019-12-18 08:50:09 -06:00
#error "Cannot compile for cusparse: NVIDIA compiler not found"
#endif
#include <cstdio>
#include <cstdlib>
#include <cuda_runtime.h>
#include <iostream>
#include <sys/time.h>
#include <sstream>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/simulators/linalg/bda/cusparseSolverBackend.hpp>
#include <opm/simulators/linalg/bda/BdaResult.hpp>
2019-12-18 08:47:35 -06:00
#include <opm/simulators/linalg/bda/cuda_header.hpp>
#include "cublas_v2.h"
#include "cusparse_v2.h"
// For more information about cusparse, check https://docs.nvidia.com/cuda/cusparse/index.html
namespace Opm
{
2019-12-18 08:50:09 -06:00
const cusparseSolvePolicy_t policy = CUSPARSE_SOLVE_POLICY_USE_LEVEL;
const cusparseOperation_t operation = CUSPARSE_OPERATION_NON_TRANSPOSE;
const cusparseDirection_t order = CUSPARSE_DIRECTION_ROW;
double second(void) {
2019-12-18 08:50:09 -06:00
struct timeval tv;
gettimeofday(&tv, nullptr);
return (double)tv.tv_sec + (double)tv.tv_usec / 1000000.0;
}
cusparseSolverBackend::cusparseSolverBackend(int verbosity_, int maxit_, double tolerance_) : verbosity(verbosity_), maxit(maxit_), tolerance(tolerance_), minit(0) {
2019-12-18 08:50:09 -06:00
}
cusparseSolverBackend::~cusparseSolverBackend() {
2019-12-18 08:50:09 -06:00
finalize();
}
void cusparseSolverBackend::gpu_pbicgstab(BdaResult& res) {
2019-12-18 08:50:09 -06:00
double t_total1, t_total2;
int n = N;
double rho = 1.0, rhop;
double alpha, nalpha, beta;
double omega, nomega, tmp1, tmp2;
double norm, norm_0;
double zero = 0.0;
double one = 1.0;
double mone = -1.0;
float it;
t_total1 = second();
cusparseDbsrmv(cusparseHandle, order, operation, Nb, Nb, nnzb, &one, descr_M, d_bVals, d_bRows, d_bCols, BLOCK_SIZE, d_x, &zero, d_r);
cublasDscal(cublasHandle, n, &mone, d_r, 1);
cublasDaxpy(cublasHandle, n, &one, d_b, 1, d_r, 1);
cublasDcopy(cublasHandle, n, d_r, 1, d_rw, 1);
cublasDcopy(cublasHandle, n, d_r, 1, d_p, 1);
cublasDnrm2(cublasHandle, n, d_r, 1, &norm_0);
if (verbosity > 1) {
2019-12-18 08:50:09 -06:00
std::ostringstream out;
out << std::scientific << "cusparseSolver initial norm: " << norm_0;
OpmLog::info(out.str());
}
for (it = 0.5; it < maxit; it+=0.5) {
2019-12-18 08:50:09 -06:00
rhop = rho;
cublasDdot(cublasHandle, n, d_rw, 1, d_r, 1, &rho);
if (it > 1) {
2019-12-18 08:50:09 -06:00
beta = (rho/rhop) * (alpha/omega);
nomega = -omega;
cublasDaxpy(cublasHandle, n, &nomega, d_v, 1, d_p, 1);
cublasDscal(cublasHandle, n, &beta, d_p, 1);
cublasDaxpy(cublasHandle, n, &one, d_r, 1, d_p, 1);
}
// apply ilu0
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzb, &one, \
descr_L, d_mVals, d_mRows, d_mCols, BLOCK_SIZE, info_L, d_p, d_t, policy, d_buffer);
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzb, &one, \
descr_U, d_mVals, d_mRows, d_mCols, BLOCK_SIZE, info_U, d_t, d_pw, policy, d_buffer);
// spmv
cusparseDbsrmv(cusparseHandle, order, \
operation, Nb, Nb, nnzb, \
&one, descr_M, d_bVals, d_bRows, d_bCols, BLOCK_SIZE, d_pw, &zero, d_v);
cublasDdot(cublasHandle, n, d_rw, 1, d_v, 1, &tmp1);
alpha = rho / tmp1;
nalpha = -alpha;
cublasDaxpy(cublasHandle, n, &nalpha, d_v, 1, d_r, 1);
cublasDaxpy(cublasHandle, n, &alpha, d_pw, 1, d_x, 1);
cublasDnrm2(cublasHandle, n, d_r, 1, &norm);
if (norm < tolerance * norm_0 && it > minit) {
2019-12-18 08:50:09 -06:00
break;
}
it += 0.5;
// apply ilu0
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzb, &one, \
descr_L, d_mVals, d_mRows, d_mCols, BLOCK_SIZE, info_L, d_r, d_t, policy, d_buffer);
cusparseDbsrsv2_solve(cusparseHandle, order, \
operation, Nb, nnzb, &one, \
descr_U, d_mVals, d_mRows, d_mCols, BLOCK_SIZE, info_U, d_t, d_s, policy, d_buffer);
// spmv
cusparseDbsrmv(cusparseHandle, order, \
operation, Nb, Nb, nnzb, &one, descr_M, \
d_bVals, d_bRows, d_bCols, BLOCK_SIZE, d_s, &zero, d_t);
cublasDdot(cublasHandle, n, d_t, 1, d_r, 1, &tmp1);
cublasDdot(cublasHandle, n, d_t, 1, d_t, 1, &tmp2);
omega = tmp1 / tmp2;
nomega = -omega;
cublasDaxpy(cublasHandle, n, &omega, d_s, 1, d_x, 1);
cublasDaxpy(cublasHandle, n, &nomega, d_t, 1, d_r, 1);
cublasDnrm2(cublasHandle, n, d_r, 1, &norm);
if (norm < tolerance * norm_0 && it > minit) {
2019-12-18 08:50:09 -06:00
break;
}
if (verbosity > 1) {
2019-12-18 08:50:09 -06:00
std::ostringstream out;
out << "it: " << it << std::scientific << ", norm: " << norm;
OpmLog::info(out.str());
}
}
t_total2 = second();
res.iterations = std::min(it, (float)maxit);
res.reduction = norm/norm_0;
res.conv_rate = static_cast<double>(pow(res.reduction,1.0/it));
res.elapsed = t_total2 - t_total1;
res.converged = (it != (maxit + 0.5));
if (verbosity > 0) {
2019-12-18 08:50:09 -06:00
std::ostringstream out;
out << "=== converged: " << res.converged << ", conv_rate: " << res.conv_rate << ", time: " << res.elapsed << \
", time per iteration: " << res.elapsed/it << ", iterations: " << it;
OpmLog::info(out.str());
}
}
void cusparseSolverBackend::initialize(int N, int nnz, int dim) {
2019-12-18 08:50:09 -06:00
this->N = N;
this->nnz = nnz;
this->BLOCK_SIZE = dim;
this->nnzb = nnz/BLOCK_SIZE/BLOCK_SIZE;
Nb = (N + dim - 1) / dim;
std::ostringstream out;
out << "Initializing GPU, matrix size: " << N << " blocks, nnz: " << nnzb << " blocks";
OpmLog::info(out.str());
out.str("");
out.clear();
out << "Minit: " << minit << ", maxit: " << maxit << std::scientific << ", tolerance: " << tolerance;
OpmLog::info(out.str());
int deviceID = 0;
cudaSetDevice(deviceID);
cudaCheckLastError("Could not get device");
struct cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceID);
cudaCheckLastError("Could not get device properties");
out.str("");
out.clear();
out << "Name GPU: " << props.name << ", Compute Capability: " << props.major << "." << props.minor;
OpmLog::info(out.str());
cudaStreamCreate(&stream);
cudaCheckLastError("Could not create stream");
cublasCreate(&cublasHandle);
cudaCheckLastError("Could not create cublasHandle");
cusparseCreate(&cusparseHandle);
cudaCheckLastError("Could not create cusparseHandle");
cudaMalloc((void**)&d_x, sizeof(double) * N);
cudaMalloc((void**)&d_b, sizeof(double) * N);
cudaMalloc((void**)&d_r, sizeof(double) * N);
cudaMalloc((void**)&d_rw,sizeof(double) * N);
cudaMalloc((void**)&d_p, sizeof(double) * N);
cudaMalloc((void**)&d_pw,sizeof(double) * N);
cudaMalloc((void**)&d_s, sizeof(double) * N);
cudaMalloc((void**)&d_t, sizeof(double) * N);
cudaMalloc((void**)&d_v, sizeof(double) * N);
cudaMalloc((void**)&d_bVals, sizeof(double) * nnz);
cudaMalloc((void**)&d_bCols, sizeof(double) * nnz);
cudaMalloc((void**)&d_bRows, sizeof(double) * (Nb+1));
cudaMalloc((void**)&d_mVals, sizeof(double) * nnz);
cudaCheckLastError("Could not allocate enough memory on GPU");
cublasSetStream(cublasHandle, stream);
cudaCheckLastError("Could not set stream to cublas");
cusparseSetStream(cusparseHandle, stream);
cudaCheckLastError("Could not set stream to cusparse");
cudaMallocHost((void**)&x, sizeof(double) * N);
cudaCheckLastError("Could not allocate pinned host memory");
initialized = true;
} // end initialize()
void cusparseSolverBackend::finalize() {
2019-12-18 08:50:09 -06:00
cudaFree(d_x);
cudaFree(d_b);
cudaFree(d_r);
cudaFree(d_rw);
cudaFree(d_p);
cudaFree(d_pw);
cudaFree(d_s);
cudaFree(d_t);
cudaFree(d_v);
cudaFree(d_mVals);
cudaFree(d_bVals);
cudaFree(d_bCols);
cudaFree(d_bRows);
cudaFree(d_buffer);
cusparseDestroyBsrilu02Info(info_M);
cusparseDestroyBsrsv2Info(info_L);
cusparseDestroyBsrsv2Info(info_U);
cusparseDestroyMatDescr(descr_B);
cusparseDestroyMatDescr(descr_M);
cusparseDestroyMatDescr(descr_L);
cusparseDestroyMatDescr(descr_U);
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
cudaHostUnregister(vals);
cudaHostUnregister(cols);
cudaHostUnregister(rows);
cudaStreamDestroy(stream);
cudaFreeHost(x);
} // end finalize()
void cusparseSolverBackend::copy_system_to_gpu(double *vals, int *rows, int *cols, double *b) {
2019-12-18 08:50:09 -06:00
double t1, t2;
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
t1 = second();
}
// information cudaHostRegister: https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1ge8d5c17670f16ac4fc8fcb4181cb490c
// possible flags for cudaHostRegister: cudaHostRegisterDefault, cudaHostRegisterPortable, cudaHostRegisterMapped, cudaHostRegisterIoMemory
cudaHostRegister(vals, nnz * sizeof(double), cudaHostRegisterDefault);
cudaHostRegister(cols, nnz * sizeof(int), cudaHostRegisterDefault);
cudaHostRegister(rows, (Nb+1) * sizeof(int), cudaHostRegisterDefault);
cudaHostRegister(b, N * sizeof(double), cudaHostRegisterDefault);
cudaMemcpyAsync(d_bVals, vals, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_bCols, cols, nnz * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_bRows, rows, (Nb+1) * sizeof(int), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b, N * sizeof(double), cudaMemcpyHostToDevice, stream);
cudaMemsetAsync(d_x, 0, sizeof(double) * N, stream);
this->vals = vals;
this->cols = cols;
this->rows = rows;
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
cudaStreamSynchronize(stream);
t2 = second();
std::ostringstream out;
out << "cusparseSolver::copy_system_to_gpu(): " << t2-t1 << " s";
OpmLog::info(out.str());
}
} // end copy_system_to_gpu()
// don't copy rowpointers and colindices, they stay the same
void cusparseSolverBackend::update_system_on_gpu(double *vals, double *b) {
2019-12-18 08:50:09 -06:00
double t1, t2;
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
t1 = second();
}
cudaMemcpyAsync(d_bVals, vals, nnz * sizeof(double), cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b, N * sizeof(double), cudaMemcpyHostToDevice, stream);
cudaMemsetAsync(d_x, 0, sizeof(double) * N, stream);
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
cudaStreamSynchronize(stream);
t2 = second();
std::ostringstream out;
out << "cusparseSolver::update_system_on_gpu(): " << t2-t1 << " s";
OpmLog::info(out.str());
}
} // end update_system_on_gpu()
void cusparseSolverBackend::reset_prec_on_gpu() {
2019-12-18 08:50:09 -06:00
cudaMemcpyAsync(d_mVals, d_bVals, nnz * sizeof(double), cudaMemcpyDeviceToDevice, stream);
}
bool cusparseSolverBackend::analyse_matrix() {
2019-12-18 08:50:09 -06:00
int d_bufferSize_M, d_bufferSize_L, d_bufferSize_U, d_bufferSize;
double t1, t2;
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
t1 = second();
}
cusparseCreateMatDescr(&descr_B);
cusparseCreateMatDescr(&descr_M);
cusparseSetMatType(descr_B, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatType(descr_M, CUSPARSE_MATRIX_TYPE_GENERAL);
const cusparseIndexBase_t base_type = CUSPARSE_INDEX_BASE_ZERO; // matrices from Flow are base0
cusparseSetMatIndexBase(descr_B, base_type);
cusparseSetMatIndexBase(descr_M, base_type);
cusparseCreateMatDescr(&descr_L);
cusparseSetMatIndexBase(descr_L, base_type);
cusparseSetMatType(descr_L, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_L, CUSPARSE_FILL_MODE_LOWER);
cusparseSetMatDiagType(descr_L, CUSPARSE_DIAG_TYPE_UNIT);
cusparseCreateMatDescr(&descr_U);
cusparseSetMatIndexBase(descr_U, base_type);
cusparseSetMatType(descr_U, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatFillMode(descr_U, CUSPARSE_FILL_MODE_UPPER);
cusparseSetMatDiagType(descr_U, CUSPARSE_DIAG_TYPE_NON_UNIT);
cudaCheckLastError("Could not initialize matrix descriptions");
cusparseCreateBsrilu02Info(&info_M);
cusparseCreateBsrsv2Info(&info_L);
cusparseCreateBsrsv2Info(&info_U);
cudaCheckLastError("Could not create analysis info");
cusparseDbsrilu02_bufferSize(cusparseHandle, order, Nb, nnzb,
descr_M, d_bVals, d_bRows, d_bCols, BLOCK_SIZE, info_M, &d_bufferSize_M);
cusparseDbsrsv2_bufferSize(cusparseHandle, order, operation, Nb, nnzb,
descr_L, d_bVals, d_bRows, d_bCols, BLOCK_SIZE, info_L, &d_bufferSize_L);
cusparseDbsrsv2_bufferSize(cusparseHandle, order, operation, Nb, nnzb,
descr_U, d_bVals, d_bRows, d_bCols, BLOCK_SIZE, info_U, &d_bufferSize_U);
cudaCheckLastError();
d_bufferSize = std::max(d_bufferSize_M, std::max(d_bufferSize_L, d_bufferSize_U));
cudaMalloc((void**)&d_buffer, d_bufferSize);
// analysis of ilu LU decomposition
cusparseDbsrilu02_analysis(cusparseHandle, order, \
Nb, nnzb, descr_B, d_bVals, d_bRows, d_bCols, \
BLOCK_SIZE, info_M, policy, d_buffer);
int structural_zero;
cusparseStatus_t status = cusparseXbsrilu02_zeroPivot(cusparseHandle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status) {
2019-12-18 08:50:09 -06:00
return false;
}
// analysis of ilu apply
cusparseDbsrsv2_analysis(cusparseHandle, order, operation, \
Nb, nnzb, descr_L, d_bVals, d_bRows, d_bCols, \
BLOCK_SIZE, info_L, policy, d_buffer);
cusparseDbsrsv2_analysis(cusparseHandle, order, operation, \
Nb, nnzb, descr_U, d_bVals, d_bRows, d_bCols, \
BLOCK_SIZE, info_U, policy, d_buffer);
cudaCheckLastError("Could not analyse level information");
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
cudaStreamSynchronize(stream);
t2 = second();
std::ostringstream out;
out << "cusparseSolver::analyse_matrix(): " << t2-t1 << " s";
OpmLog::info(out.str());
}
return true;
} // end analyse_matrix()
bool cusparseSolverBackend::create_preconditioner() {
2019-12-18 08:50:09 -06:00
double t1, t2;
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
t1 = second();
}
d_mCols = d_bCols;
d_mRows = d_bRows;
cusparseDbsrilu02(cusparseHandle, order, \
Nb, nnzb, descr_M, d_mVals, d_mRows, d_mCols, \
BLOCK_SIZE, info_M, policy, d_buffer);
int structural_zero;
// cusparseXbsrilu02_zeroPivot() calls cudaDeviceSynchronize()
cusparseStatus_t status = cusparseXbsrilu02_zeroPivot(cusparseHandle, info_M, &structural_zero);
if (CUSPARSE_STATUS_ZERO_PIVOT == status) {
2019-12-18 08:50:09 -06:00
return false;
}
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
cudaStreamSynchronize(stream);
t2 = second();
std::ostringstream out;
out << "cusparseSolver::create_preconditioner(): " << t2-t1 << " s";
OpmLog::info(out.str());
}
return true;
} // end create_preconditioner()
void cusparseSolverBackend::solve_system(BdaResult &res) {
2019-12-18 08:50:09 -06:00
// actually solve
gpu_pbicgstab(res);
cudaStreamSynchronize(stream);
cudaCheckLastError("Something went wrong during the GPU solve");
} // end solve_system()
// copy result to host memory
// caller must be sure that x is a valid array
void cusparseSolverBackend::post_process(double *x) {
2019-12-18 08:50:09 -06:00
if (!initialized) {
2019-12-18 08:50:09 -06:00
cudaHostRegister(x, N * sizeof(double), cudaHostRegisterDefault);
}
double t1, t2;
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
t1 = second();
}
cudaMemcpyAsync(x, d_x, N * sizeof(double), cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
if (verbosity > 2) {
2019-12-18 08:50:09 -06:00
t2 = second();
std::ostringstream out;
out << "cusparseSolver::post_process(): " << t2-t1 << " s";
OpmLog::info(out.str());
}
} // end post_process()
typedef cusparseSolverBackend::cusparseSolverStatus cusparseSolverStatus;
cusparseSolverStatus cusparseSolverBackend::solve_system(int N, int nnz, int dim, double *vals, int *rows, int *cols, double *b, BdaResult &res) {
if (initialized == false) {
2019-12-18 08:50:09 -06:00
initialize(N, nnz, dim);
copy_system_to_gpu(vals, rows, cols, b);
}else{
update_system_on_gpu(vals, b);
}
if (analysis_done == false) {
if (!analyse_matrix()) {
2019-12-18 08:50:09 -06:00
return cusparseSolverStatus::CUSPARSE_SOLVER_ANALYSIS_FAILED;
}
}
reset_prec_on_gpu();
if (create_preconditioner()) {
2019-12-18 08:50:09 -06:00
solve_system(res);
}else{
return cusparseSolverStatus::CUSPARSE_SOLVER_CREATE_PRECONDITIONER_FAILED;
}
return cusparseSolverStatus::CUSPARSE_SOLVER_SUCCESS;
}
}