opm-simulators/opm/simulators/linalg/DILU.hpp

192 lines
5.9 KiB
C++
Raw Normal View History

2023-09-27 08:47:05 -05:00
/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_DILU_HEADER_INCLUDED
#define OPM_DILU_HEADER_INCLUDED
#include <config.h>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
#include <dune/common/unused.hh>
#include <dune/istl/bcrsmatrix.hh>
namespace Dune
{
/*! \brief The sequential DILU preconditioner.
\tparam M The matrix type to operate on
\tparam X Type of the update
\tparam Y Type of the defect
*/
template <class M, class X, class Y>
class SeqDilu : public PreconditionerWithUpdate<X, Y>
{
public:
//! \brief The matrix type the preconditioner is for.
using matrix_type = M;
//! \brief The domain type of the preconditioner.
using domain_type = X;
//! \brief The range type of the preconditioner.
using range_type = Y;
//! \brief The field type of the preconditioner.
using field_type = typename X::field_type;
//! \brief scalar type underlying the field_type
/*! \brief Constructor.
Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
*/
SeqDilu(const M& A)
: A_(A)
{
Dinv_.resize(A_.N());
// the Dinv matrix must be initialised
update();
}
/*!
\brief Update the preconditioner.
\copydoc Preconditioner::update()
*/
virtual void update() override
{
OPM_TIMEBLOCK(update);
auto endi = A_.end();
for ( auto row = A_.begin(); row != endi; ++row) {
const auto row_i = row.index();
Dinv_[row_i] = A_[row_i][row_i];
}
for ( auto row = A_.begin(); row != endi; ++row)
{
const auto row_i = row.index();
auto Dinv_temp = Dinv_[row_i];
for (auto a_ij = row->begin(); a_ij.index() < row_i; ++a_ij)
{
const auto col_j = a_ij.index();
const auto a_ji = A_[col_j].find(row_i);
// if A[i, j] != 0 and A[j, i] != 0
if (a_ji != A_[col_j].end()) {
// Dinv_temp -= A[i, j] * d[j] * A[j, i]
Dinv_temp -= (*a_ij) * Dune::FieldMatrix(Dinv_[col_j]) * (*a_ji);
}
}
Dinv_temp.invert();
Dinv_[row_i] = Dinv_temp;
}
}
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
virtual void pre(X& v, Y& d) override
{
DUNE_UNUSED_PARAMETER(v);
DUNE_UNUSED_PARAMETER(d);
}
/*!
\brief Apply the preconditioner.
\copydoc Preconditioner::apply(X&,const Y&)
*/
virtual void apply(X& v, const Y& d) override
{
// M = (D + L_A) D^-1 (D + U_A) (a LU decomposition of M)
// where L_A and U_A are the strictly lower and upper parts of A and M has the properties:
// diag(A) = diag(M)
// Working with defect d = b - Ax and update v = x_{n+1} - x_n
// solving the product M^-1(d) using upper and lower triangular solve
// v = M^{-1}*d = (D + U_A)^{-1} D (D + L_A)^{-1} * d
OPM_TIMEBLOCK(apply);
using Xblock = typename X::block_type;
using Yblock = typename Y::block_type;
// lower triangular solve: (D + L_A) y = d
auto endi = A_.end();
for (auto row = A_.begin(); row != endi; ++row)
{
const auto row_i = row.index();
Yblock rhs = d[row_i];
for (auto a_ij = (*row).begin(); a_ij.index() < row_i; ++a_ij) {
// if A[i][j] != 0
// rhs -= A[i][j]* y[j], where v_j stores y_j
const auto col_j = a_ij.index();
a_ij->mmv(v[col_j], rhs);
}
// y_i = Dinv_i * rhs
// storing y_i in v_i
Dinv_[row_i].mv(rhs, v[row_i]); // (D + L_A)_ii = D_i
}
// upper triangular solve: (D + U_A) v = Dy
auto rendi = A_.beforeBegin();
for (auto row = A_.beforeEnd(); row != rendi; --row)
{
const auto row_i = row.index();
// rhs = 0
Xblock rhs(0.0);
for (auto a_ij = (*row).beforeEnd(); a_ij.index() > row_i; --a_ij) {
// if A[i][j] != 0
// rhs += A[i][j]*v[j]
const auto col_j = a_ij.index();
a_ij->umv(v[col_j], rhs);
}
// calculate update v = M^-1*d
// v_i = y_i - Dinv_i*rhs
// before update v_i is y_i
Dinv_[row_i].mmv(rhs, v[row_i]);
}
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
virtual void post(X& x) override
{
DUNE_UNUSED_PARAMETER(x);
}
std::vector<typename M::block_type> getDiagonal()
{
return Dinv_;
}
//! Category of the preconditioner (see SolverCategory::Category)
virtual SolverCategory::Category category() const override
{
return SolverCategory::sequential;
}
private:
//! \brief The matrix we operate on.
const M& A_;
//! \brief The inverse of the diagnal matrix
std::vector<typename M::block_type> Dinv_;
};
} // namespace Dune
#endif