opm-simulators/opm/simulators/wells/WellInterfaceGeneric.cpp

382 lines
12 KiB
C++
Raw Normal View History

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellTestState.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <stdexcept>
namespace Opm
{
WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: well_ecl_(well)
, parallel_well_info_(pw_info)
, current_step_(time_step)
, pvtRegionIdx_(pvtRegionIdx)
, num_components_(num_components)
, number_of_phases_(num_phases)
, index_of_well_(index_of_well)
, perf_data_(&perf_data)
, ipr_a_(number_of_phases_)
, ipr_b_(number_of_phases_)
{
assert(well.name()==pw_info.name());
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
[](const auto& perf1, const auto& perf2){
return perf1.ecl_index < perf2.ecl_index;
}));
if (time_step < 0) {
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
}
ref_depth_ = well.getRefDepth();
// We do not want to count SHUT perforations here, so
// it would be wrong to use wells.getConnections().size().
number_of_perforations_ = perf_data.size();
// perforations related
{
well_cells_.resize(number_of_perforations_);
well_index_.resize(number_of_perforations_);
saturation_table_number_.resize(number_of_perforations_);
int perf = 0;
for (const auto& pd : perf_data) {
well_cells_[perf] = pd.cell_index;
well_index_[perf] = pd.connection_transmissibility_factor;
saturation_table_number_[perf] = pd.satnum_id;
++perf;
}
}
// initialization of the completions mapping
initCompletions();
well_efficiency_factor_ = 1.0;
this->wellStatus_ = Well::Status::OPEN;
if (well.getStatus() == Well::Status::STOP) {
this->wellStatus_ = Well::Status::STOP;
}
wsolvent_ = 0.0;
}
const std::string& WellInterfaceGeneric::name() const
{
return well_ecl_.name();
}
bool WellInterfaceGeneric::isInjector() const
{
return well_ecl_.isInjector();
}
bool WellInterfaceGeneric::isProducer() const
{
return well_ecl_.isProducer();
}
int WellInterfaceGeneric::indexOfWell() const
{
return index_of_well_;
}
bool WellInterfaceGeneric::getAllowCrossFlow() const
{
return well_ecl_.getAllowCrossFlow();
}
const Well& WellInterfaceGeneric::wellEcl() const
{
return well_ecl_;
}
const PhaseUsage& WellInterfaceGeneric::phaseUsage() const
{
assert(phase_usage_ != nullptr);
return *phase_usage_;
}
double WellInterfaceGeneric::wsolvent() const
{
return wsolvent_;
}
bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return true;
}
if (well_ecl_.isInjector()) {
const auto controls = well_ecl_.injectionControls(summaryState);
if (controls.hasControl(Well::InjectorCMode::THP))
return true;
}
if (well_ecl_.isProducer( )) {
const auto controls = well_ecl_.productionControls(summaryState);
if (controls.hasControl(Well::ProducerCMode::THP))
return true;
}
return false;
}
double WellInterfaceGeneric::mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
{
if (well_ecl_.isInjector()) {
const auto& controls = well_ecl_.injectionControls(summaryState);
return controls.bhp_limit;
}
if (well_ecl_.isProducer( )) {
const auto& controls = well_ecl_.productionControls(summaryState);
return controls.bhp_limit;
}
return 0.0;
}
double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return *dynamic_thp_limit_;
}
if (well_ecl_.isInjector()) {
const auto& controls = well_ecl_.injectionControls(summaryState);
return controls.thp_limit;
}
if (well_ecl_.isProducer( )) {
const auto& controls = well_ecl_.productionControls(summaryState);
return controls.thp_limit;
}
return 0.0;
}
bool WellInterfaceGeneric::underPredictionMode() const
{
return well_ecl_.predictionMode();
}
void WellInterfaceGeneric::initCompletions()
{
assert(completions_.empty() );
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
if (connections[c].state() == Connection::State::OPEN) {
completions_[connections[c].complnum()].push_back(num_active_connections++);
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
}
void WellInterfaceGeneric::closeCompletions(WellTestState& wellTestState)
{
const auto& connections = well_ecl_.getConnections();
int perfIdx = 0;
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN) {
if (wellTestState.hasCompletion(name(), connection.complnum())) {
well_index_[perfIdx] = 0.0;
}
perfIdx++;
}
}
}
void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg)
{
guide_rate_ = guide_rate_arg;
}
void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor)
{
well_efficiency_factor_ = efficiency_factor;
}
void WellInterfaceGeneric::setRepRadiusPerfLength(const std::vector<int>& cartesian_to_compressed)
{
const int nperf = number_of_perforations_;
perf_rep_radius_.clear();
perf_length_.clear();
bore_diameters_.clear();
perf_rep_radius_.reserve(nperf);
perf_length_.reserve(nperf);
bore_diameters_.reserve(nperf);
// COMPDAT handling
const auto& connectionSet = well_ecl_.getConnections();
CheckDistributedWellConnections checker(well_ecl_, parallel_well_info_);
for (size_t c=0; c<connectionSet.size(); c++) {
const auto& connection = connectionSet.get(c);
const int cell =
cartesian_to_compressed[connection.global_index()];
if (connection.state() != Connection::State::OPEN || cell >= 0)
{
checker.connectionFound(c);
}
if (connection.state() == Connection::State::OPEN) {
if (cell >= 0) {
double radius = connection.rw();
double re = connection.re(); // area equivalent radius of the grid block
double perf_length = connection.connectionLength(); // the length of the well perforation
const double repR = std::sqrt(re * radius);
perf_rep_radius_.push_back(repR);
perf_length_.push_back(perf_length);
bore_diameters_.push_back(2. * radius);
}
}
}
checker.checkAllConnectionsFound();
}
void WellInterfaceGeneric::setWsolvent(const double wsolvent)
{
wsolvent_ = wsolvent;
}
void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit)
{
dynamic_thp_limit_ = thp_limit;
}
void WellInterfaceGeneric::updatePerforatedCell(std::vector<bool>& is_cell_perforated)
{
for (int perf_idx = 0; perf_idx<number_of_perforations_; ++perf_idx) {
is_cell_perforated[well_cells_[perf_idx]] = true;
}
}
bool WellInterfaceGeneric::isVFPActive(DeferredLogger& deferred_logger) const
{
// since the well_controls only handles the VFP number when THP constraint/target is there.
// we need to get the table number through the parser, in case THP constraint/target is not there.
// When THP control/limit is not active, if available VFP table is provided, we will still need to
// update THP value. However, it will only used for output purpose.
if (isProducer()) { // producer
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getProd()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specfied,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
} else { // injector
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getInj()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specfied,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
}
}
2021-09-20 04:41:40 -05:00
void WellInterfaceGeneric::updateWellTestStatePhysical(const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
DeferredLogger& deferred_logger) const
{
2021-09-29 09:01:16 -05:00
if (!isOperableAndSolvable()) {
if (well_test_state.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC) ||
well_test_state.hasWellClosed(name(), WellTestConfig::Reason::PHYSICAL) ) {
// Already closed, do nothing.
} else {
well_test_state.closeWell(name(), WellTestConfig::Reason::PHYSICAL, simulation_time);
if (write_message_to_opmlog) {
const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped";
const std::string msg = "Well " + name()
+ " will be " + action + " as it can not operate under current reservoir conditions.";
deferred_logger.info(msg);
}
}
}
}
2021-09-29 09:01:16 -05:00
bool WellInterfaceGeneric::isOperableAndSolvable() const
{
2021-09-29 09:01:16 -05:00
return operability_status_.isOperableAndSolvable();
}
double WellInterfaceGeneric::getALQ(const WellState& well_state) const
{
return well_state.getALQ(name());
}
} // namespace Opm