opm-simulators/examples/sim_fibo_ad.cpp

348 lines
13 KiB
C++
Raw Normal View History

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/grid.h>
#include <opm/core/grid/GridManager.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/simulator/initState.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/core/simulator/SimulatorTimer.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/io/eclipse/EclipseWriter.hpp>
#include <opm/core/props/BlackoilPropertiesBasic.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/linalg/LinearSolverFactory.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/SimulatorFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/core/utility/share_obj.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#include <memory>
#include <algorithm>
#include <iostream>
#include <vector>
#include <numeric>
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Unused parameters: --------------------\n";
param.displayUsage();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
using namespace Opm;
std::cout << "\n================ Test program for fully implicit three-phase black-oil flow ===============\n\n";
parameter::ParameterGroup param(argc, argv, false);
std::cout << "--------------- Reading parameters ---------------" << std::endl;
// If we have a "deck_filename", grid and props will be read from that.
bool use_deck = param.has("deck_filename");
if (!use_deck) {
OPM_THROW(std::runtime_error, "This program must be run with an input deck. "
"Specify the deck with deck_filename=deckname.data (for example).");
}
std::shared_ptr<GridManager> grid;
std::shared_ptr<BlackoilPropertiesInterface> props;
std::shared_ptr<BlackoilPropsAdInterface> new_props;
std::shared_ptr<RockCompressibility> rock_comp;
BlackoilState state;
// bool check_well_controls = false;
// int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
std::string deck_filename = param.get<std::string>("deck_filename");
#define USE_NEW_PARSER 1
#if USE_NEW_PARSER
Opm::ParserPtr newParser(new Opm::Parser() );
Opm::DeckConstPtr newParserDeck = newParser->parseFile( deck_filename );
#else
std::shared_ptr<EclipseGridParser> deck;
deck.reset(new EclipseGridParser(deck_filename));
#endif
// Grid init
#if USE_NEW_PARSER
grid.reset(new GridManager(newParserDeck));
#else
grid.reset(new GridManager(*deck));
#endif
#if USE_NEW_PARSER
Opm::EclipseWriter outputWriter(param, newParserDeck, share_obj(*grid->c_grid()));
#else
Opm::EclipseWriter outputWriter(param, deck, share_obj(*grid->c_grid()));
#endif
// Rock and fluid init
#if USE_NEW_PARSER
props.reset(new BlackoilPropertiesFromDeck(newParserDeck, *grid->c_grid(), param));
new_props.reset(new BlackoilPropsAdFromDeck(newParserDeck, *grid->c_grid()));
#else
props.reset(new BlackoilPropertiesFromDeck(*deck, *grid->c_grid(), param));
new_props.reset(new BlackoilPropsAdFromDeck(*deck, *grid->c_grid()));
#endif
// check_well_controls = param.getDefault("check_well_controls", false);
// max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Rock compressibility.
#if USE_NEW_PARSER
rock_comp.reset(new RockCompressibility(newParserDeck));
#else
rock_comp.reset(new RockCompressibility(*deck));
#endif
// Gravity.
#if USE_NEW_PARSER
gravity[2] = newParserDeck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
#else
gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
#endif
// Init state variables (saturation and pressure).
if (param.has("init_saturation")) {
initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
initBlackoilSurfvol(*grid->c_grid(), *props, state);
enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour };
const PhaseUsage pu = props->phaseUsage();
if (pu.phase_used[Oil] && pu.phase_used[Gas]) {
const int np = props->numPhases();
const int nc = grid->c_grid()->number_of_cells;
for (int c = 0; c < nc; ++c) {
state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]]
/ state.surfacevol()[c*np + pu.phase_pos[Oil]];
}
}
} else {
#if USE_NEW_PARSER
initBlackoilStateFromDeck(*grid->c_grid(), *props, newParserDeck, gravity[2], state);
#else
initBlackoilStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
#endif
}
bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
const double *grav = use_gravity ? &gravity[0] : 0;
// Linear solver.
LinearSolverFactory linsolver(param);
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream outStream;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
2013-09-03 08:00:29 -05:00
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
std::string filename = output_dir + "/timing.param";
outStream.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
// open file to clean it. The file is appended to in SimulatorTwophase
filename = output_dir + "/step_timing.param";
std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
step_os.close();
param.writeParam(output_dir + "/simulation.param");
}
#if USE_NEW_PARSER
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< std::flush;
WellStateFullyImplicitBlackoil well_state;
Opm::TimeMapPtr timeMap(new Opm::TimeMap(newParserDeck));
SimulatorTimer simtimer;
std::shared_ptr<EclipseState> eclipseState(new EclipseState(newParserDeck));
// initialize variables
simtimer.init(timeMap);
SimulatorReport fullReport;
for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
// Report on start of a report step.
std::cout << "\n"
<< "---------------------------------------------------------------\n"
<< "-------------- Starting report step " << reportStepIdx << " --------------\n"
<< "---------------------------------------------------------------\n"
<< "\n";
WellsManager wells(eclipseState,
reportStepIdx,
*grid->c_grid(),
props->permeability());
if (reportStepIdx == 0) {
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch,
// since number of wells may change etc.
well_state.init(wells.c_wells(), state);
}
simtimer.setCurrentStepNum(reportStepIdx);
if (reportStepIdx == 0) {
outputWriter.writeInit(simtimer, state, well_state.basicWellState());
outputWriter.writeTimeStep(simtimer, state, well_state.basicWellState());
}
// Create and run simulator.
SimulatorFullyImplicitBlackoil simulator(param,
*grid->c_grid(),
*new_props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
linsolver,
grav);
SimulatorReport episodeReport = simulator.run(simtimer, state, well_state);
++simtimer;
outputWriter.writeTimeStep(simtimer, state, well_state.basicWellState());
fullReport += episodeReport;
}
std::cout << "\n\n================ End of simulation ===============\n\n";
fullReport.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
fullReport.reportParam(tot_os);
warnIfUnusedParams(param);
}
#else
std::cout << "\n\n================ Starting main simulation loop ===============\n"
<< " (number of epochs: "
<< (deck->numberOfEpochs()) << ")\n\n" << std::flush;
SimulatorReport rep;
// With a deck, we may have more epochs etc.
WellStateFullyImplicitBlackoil well_state;
int step = 0;
SimulatorTimer simtimer;
// Use timer for last epoch to obtain total time.
deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
simtimer.init(*deck);
const double total_time = simtimer.totalTime();
for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
// Set epoch index.
deck->setCurrentEpoch(epoch);
// Update the timer.
if (deck->hasField("TSTEP")) {
simtimer.init(*deck);
} else {
if (epoch != 0) {
OPM_THROW(std::runtime_error, "No TSTEP in deck for epoch " << epoch);
}
simtimer.init(param);
}
simtimer.setCurrentStepNum(step);
simtimer.setTotalTime(total_time);
// Report on start of epoch.
std::cout << "\n\n-------------- Starting epoch " << epoch << " --------------"
<< "\n (number of steps: "
<< simtimer.numSteps() - step << ")\n\n" << std::flush;
// Create new wells, well_state
WellsManager wells(*deck, *grid->c_grid(), props->permeability());
// @@@ HACK: we should really make a new well state and
// properly transfer old well state to it every epoch,
// since number of wells may change etc.
if (epoch == 0) {
well_state.init(wells.c_wells(), state);
}
if (epoch == 0)
outputWriter.writeInit(simtimer, state, well_state.basicWellState());
// Create and run simulator.
SimulatorFullyImplicitBlackoil simulator(param,
*grid->c_grid(),
*new_props,
rock_comp->isActive() ? rock_comp.get() : 0,
wells,
linsolver,
grav);
outputWriter.writeTimeStep(simtimer, state, well_state.basicWellState());
if (epoch == 0) {
warnIfUnusedParams(param);
}
SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
if (output) {
epoch_rep.reportParam(outStream);
}
// Update total timing report and remember step number.
rep += epoch_rep;
step = simtimer.currentStepNum();
}
std::cout << "\n\n================ End of simulation ===============\n\n";
rep.report(std::cout);
if (output) {
std::string filename = output_dir + "/walltime.param";
std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
rep.reportParam(tot_os);
}
#endif
}
catch (const std::exception &e) {
std::cerr << "Program threw an exception: " << e.what() << "\n";
throw;
}