opm-simulators/opm/core/wells/WellsManager_impl.hpp

820 lines
38 KiB
C++
Raw Normal View History

#include <opm/core/utility/Units.hpp>
#include <opm/core/grid/GridHelpers.hpp>
#include <array>
namespace WellsManagerDetail
{
namespace ProductionControl
{
enum Mode { ORAT, WRAT, GRAT,
LRAT, CRAT, RESV,
BHP , THP , GRUP };
/*
namespace Details {
std::map<std::string, Mode>
init_mode_map();
} // namespace Details
*/
Mode mode(const std::string& control);
Mode mode(Opm::WellProducer::ControlModeEnum controlMode);
} // namespace ProductionControl
namespace InjectionControl
{
enum Mode { RATE, RESV, BHP,
THP, GRUP };
/*
namespace Details {
std::map<std::string, Mode>
init_mode_map();
} // namespace Details
*/
Mode mode(const std::string& control);
Mode mode(Opm::WellInjector::ControlModeEnum controlMode);
} // namespace InjectionControl
double computeWellIndex(const double radius,
const std::array<double, 3>& cubical,
const double* cell_permeability,
const double skin_factor);
template<class C2F, class FC>
std::array<double, 3> getCubeDim(const C2F& c2f, FC begin_face_centroids, int dimensions,
int cell)
{
using namespace std;
std::array<double, 3> cube;
//typedef Opm::UgGridHelpers::Cell2FacesTraits<UnstructuredGrid>::Type Cell2Faces;
//Cell2Faces c2f=Opm::UgGridHelpers::cell2Faces(grid);
typedef typename C2F::row_type FaceRow;
FaceRow faces=c2f[cell];
typename FaceRow::const_iterator face=faces.begin();
int num_local_faces = faces.end()-face;
vector<double> x(num_local_faces);
vector<double> y(num_local_faces);
vector<double> z(num_local_faces);
for (int lf=0; lf<num_local_faces; ++ lf, ++face) {
FC centroid = Opm::UgGridHelpers::increment(begin_face_centroids, *face, dimensions);
x[lf] = Opm::UgGridHelpers::getCoordinate(centroid, 0);
y[lf] = Opm::UgGridHelpers::getCoordinate(centroid, 1);
z[lf] = Opm::UgGridHelpers::getCoordinate(centroid, 2);
}
cube[0] = *max_element(x.begin(), x.end()) - *min_element(x.begin(), x.end());
cube[1] = *max_element(y.begin(), y.end()) - *min_element(y.begin(), y.end());
cube[2] = *max_element(z.begin(), z.end()) - *min_element(z.begin(), z.end());
return cube;
}
} // end namespace
namespace Opm
{
template<class C2F, class CC, class FC>
void WellsManager::createWellsFromSpecs(std::vector<WellConstPtr>& wells, size_t timeStep,
const C2F& c2f,
const int* cart_dims,
FC begin_face_centroids,
CC begin_cell_centroids,
int dimensions,
std::vector<std::string>& well_names,
std::vector<WellData>& well_data,
std::map<std::string, int>& well_names_to_index,
const PhaseUsage& phaseUsage,
std::map<int,int> cartesian_to_compressed,
const double* permeability)
{
std::vector<std::vector<PerfData> > wellperf_data;
wellperf_data.resize(wells.size());
int well_index = 0;
for (auto wellIter= wells.begin(); wellIter != wells.end(); ++wellIter) {
WellConstPtr well = (*wellIter);
{ // WELSPECS handling
well_names_to_index[well->name()] = well_index;
well_names.push_back(well->name());
{
WellData wd;
// If negative (defaulted), set refdepth to a marker
// value, will be changed after getting perforation
// data to the centroid of the cell of the top well
// perforation.
wd.reference_bhp_depth = (well->getRefDepth() < 0.0) ? -1e100 : well->getRefDepth();
wd.welspecsline = -1;
if (well->isInjector( timeStep ))
wd.type = INJECTOR;
else
wd.type = PRODUCER;
well_data.push_back(wd);
}
}
{ // COMPDAT handling
CompletionSetConstPtr completionSet = well->getCompletions(timeStep);
for (size_t c=0; c<completionSet->size(); c++) {
CompletionConstPtr completion = completionSet->get(c);
int i = completion->getI();
int j = completion->getJ();
int k = completion->getK();
const int* cpgdim = cart_dims;
int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
if (checkCellExistence_)
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
<< k << " not found in grid (well = " << well->name() << ')');
continue;
}
int cell = cgit->second;
PerfData pd;
pd.cell = cell;
if (completion->getCF() > 0.0) {
pd.well_index = completion->getCF();
} else {
double radius = 0.5*completion->getDiameter();
if (radius <= 0.0) {
radius = 0.5*unit::feet;
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
std::array<double, 3> cubical = WellsManagerDetail::getCubeDim(c2f, begin_face_centroids,
dimensions, cell);
const double* cell_perm = &permeability[dimensions*dimensions*cell];
pd.well_index = WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm, completion->getDiameter());
}
wellperf_data[well_index].push_back(pd);
}
}
well_index++;
}
// Set up reference depths that were defaulted. Count perfs.
const int num_wells = well_data.size();
int num_perfs = 0;
assert(dimensions == 3);
for (int w = 0; w < num_wells; ++w) {
num_perfs += wellperf_data[w].size();
if (well_data[w].reference_bhp_depth < 0.0) {
// It was defaulted. Set reference depth to minimum perforation depth.
double min_depth = 1e100;
int num_wperfs = wellperf_data[w].size();
for (int perf = 0; perf < num_wperfs; ++perf) {
double depth = UgGridHelpers
::getCoordinate(UgGridHelpers::increment(begin_cell_centroids,
wellperf_data[w][perf].cell,
dimensions),
2);
min_depth = std::min(min_depth, depth);
}
well_data[w].reference_bhp_depth = min_depth;
}
}
// Create the well data structures.
w_ = create_wells(phaseUsage.num_phases, num_wells, num_perfs);
if (!w_) {
OPM_THROW(std::runtime_error, "Failed creating Wells struct.");
}
// Add wells.
for (int w = 0; w < num_wells; ++w) {
const int w_num_perf = wellperf_data[w].size();
std::vector<int> perf_cells(w_num_perf);
std::vector<double> perf_prodind(w_num_perf);
for (int perf = 0; perf < w_num_perf; ++perf) {
perf_cells[perf] = wellperf_data[w][perf].cell;
perf_prodind[perf] = wellperf_data[w][perf].well_index;
}
const double* comp_frac = NULL;
// We initialize all wells with a null component fraction,
// and must (for injection wells) overwrite it later.
int ok = add_well(well_data[w].type, well_data[w].reference_bhp_depth, w_num_perf,
comp_frac, &perf_cells[0], &perf_prodind[0], well_names[w].c_str(), w_);
if (!ok) {
OPM_THROW(std::runtime_error, "Failed adding well " << well_names[w] << " to Wells data structure.");
}
}
}
template<class CC, class C2F, class FC>
WellsManager::WellsManager(const Opm::EclipseGridParser& deck,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
int dimensions,
CC begin_cell_centroids,
const C2F& c2f,
FC begin_face_centroids,
const double* permeability,
bool checkCellExistence)
: w_(0), checkCellExistence_(checkCellExistence)
{
init(deck, number_of_cells, global_cell, cart_dims, dimensions,
begin_cell_centroids, c2f, begin_face_centroids, permeability);
}
/// Construct wells from deck.
template<class CC, class C2F, class FC>
void WellsManager::init(const Opm::EclipseGridParser& deck,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
int dimensions,
CC begin_cell_centroids,
const C2F& c2f,
FC begin_face_centroids,
const double* permeability)
{
if (dimensions != 3) {
OPM_THROW(std::runtime_error, "We cannot initialize wells from a deck unless the corresponding grid is 3-dimensional.");
}
// NOTE: Implementation copied and modified from dune-porsol's class BlackoilWells.
std::vector<std::string> keywords;
keywords.push_back("WELSPECS");
keywords.push_back("COMPDAT");
// keywords.push_back("WELTARG");
if (!deck.hasFields(keywords)) {
OPM_MESSAGE("Missing well keywords in deck, initializing no wells.");
return;
}
if (!(deck.hasField("WCONINJE") || deck.hasField("WCONPROD")) ) {
OPM_THROW(std::runtime_error, "Needed field is missing in file");
}
// Obtain phase usage data.
PhaseUsage pu = phaseUsageFromDeck(deck);
// These data structures will be filled in this constructor,
// then used to initialize the Wells struct.
std::vector<std::string> well_names;
std::vector<WellData> well_data;
std::vector<std::vector<PerfData> > wellperf_data;
// For easy lookup:
std::map<std::string, int> well_names_to_index;
typedef std::map<std::string, int>::const_iterator WNameIt;
// Get WELSPECS data.
// It is allowed to have multiple lines corresponding to
// the same well, in which case the last one encountered
// is the one used.
const WELSPECS& welspecs = deck.getWELSPECS();
const int num_welspecs = welspecs.welspecs.size();
well_names.reserve(num_welspecs);
well_data.reserve(num_welspecs);
for (int w = 0; w < num_welspecs; ++w) {
// First check if this well has already been encountered.
// If so, we modify it's data instead of appending a new well
// to the well_data and well_names vectors.
const std::string& name = welspecs.welspecs[w].name_;
const double refdepth = welspecs.welspecs[w].datum_depth_BHP_;
WNameIt wit = well_names_to_index.find(name);
if (wit == well_names_to_index.end()) {
// New well, append data.
well_names_to_index[welspecs.welspecs[w].name_] = well_data.size();
well_names.push_back(name);
WellData wd;
// If negative (defaulted), set refdepth to a marker
// value, will be changed after getting perforation
// data to the centroid of the cell of the top well
// perforation.
wd.reference_bhp_depth = (refdepth < 0.0) ? -1e100 : refdepth;
wd.welspecsline = w;
well_data.push_back(wd);
} else {
// Existing well, change data.
const int wix = wit->second;
well_data[wix].reference_bhp_depth = (refdepth < 0.0) ? -1e100 : refdepth;
well_data[wix].welspecsline = w;
}
}
const int num_wells = well_data.size();
wellperf_data.resize(num_wells);
// global_cell is a map from compressed cells to Cartesian grid cells.
// We must make the inverse lookup.
const int* cpgdim = cart_dims;
std::map<int,int> cartesian_to_compressed;
if (global_cell) {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
}
else {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(i, i));
}
}
// Get COMPDAT data
// It is *not* allowed to have multiple lines corresponding to
// the same perforation!
const COMPDAT& compdat = deck.getCOMPDAT();
const int num_compdat = compdat.compdat.size();
for (int kw = 0; kw < num_compdat; ++kw) {
// Extract well name, or the part of the well name that
// comes before the '*'.
std::string name = compdat.compdat[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
// Look for well with matching name.
bool found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { // equal
// Extract corresponding WELSPECS defintion for
// purpose of default location specification.
const WelspecsLine& wspec = welspecs.welspecs[well_data[wix].welspecsline];
// We have a matching name.
int ix = compdat.compdat[kw].grid_ind_[0] - 1;
int jy = compdat.compdat[kw].grid_ind_[1] - 1;
int kz1 = compdat.compdat[kw].grid_ind_[2] - 1;
int kz2 = compdat.compdat[kw].grid_ind_[3] - 1;
if (ix < 0) {
// Defaulted I location. Extract from WELSPECS.
ix = wspec.I_ - 1;
}
if (jy < 0) {
// Defaulted J location. Extract from WELSPECS.
jy = wspec.J_ - 1;
}
if (kz1 < 0) {
// Defaulted KZ1. Use top layer.
kz1 = 0;
}
if (kz2 < 0) {
// Defaulted KZ2. Use bottom layer.
kz2 = cpgdim[2] - 1;
}
for (int kz = kz1; kz <= kz2; ++kz) {
int cart_grid_indx = ix + cpgdim[0]*(jy + cpgdim[1]*kz);
std::map<int, int>::const_iterator cgit =
cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
if(checkCellExistence_)
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << ix << ' ' << jy << ' '
<< kz << " not found in grid (well = " << name << ')');
continue;
}
int cell = cgit->second;
PerfData pd;
pd.cell = cell;
if (compdat.compdat[kw].connect_trans_fac_ > 0.0) {
pd.well_index = compdat.compdat[kw].connect_trans_fac_;
} else {
double radius = 0.5*compdat.compdat[kw].diameter_;
if (radius <= 0.0) {
radius = 0.5*unit::feet;
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
std::array<double, 3> cubical = WellsManagerDetail::getCubeDim(c2f,
begin_face_centroids,
dimensions,
cell);
const double* cell_perm = &permeability[dimensions*dimensions*cell];
pd.well_index = WellsManagerDetail::computeWellIndex(radius, cubical, cell_perm,
compdat.compdat[kw].skin_factor_);
}
wellperf_data[wix].push_back(pd);
}
found = true;
break;
}
}
if (!found) {
OPM_THROW(std::runtime_error, "Undefined well name: " << compdat.compdat[kw].well_
<< " in COMPDAT");
}
}
// Set up reference depths that were defaulted. Count perfs.
int num_perfs = 0;
assert(dimensions == 3);
for (int w = 0; w < num_wells; ++w) {
num_perfs += wellperf_data[w].size();
if (well_data[w].reference_bhp_depth < 0.0) {
// It was defaulted. Set reference depth to minimum perforation depth.
double min_depth = 1e100;
int num_wperfs = wellperf_data[w].size();
for (int perf = 0; perf < num_wperfs; ++perf) {
double depth = UgGridHelpers::
getCoordinate(UgGridHelpers::increment(begin_cell_centroids,
wellperf_data[w][perf].cell,
dimensions), 2);
min_depth = std::min(min_depth, depth);
}
well_data[w].reference_bhp_depth = min_depth;
}
}
// Create the well data structures.
w_ = create_wells(pu.num_phases, num_wells, num_perfs);
if (!w_) {
OPM_THROW(std::runtime_error, "Failed creating Wells struct.");
}
// Classify wells
if (deck.hasField("WCONINJE")) {
const std::vector<WconinjeLine>& lines = deck.getWCONINJE().wconinje;
for (size_t i = 0 ; i < lines.size(); ++i) {
const std::map<std::string, int>::const_iterator it = well_names_to_index.find(lines[i].well_);
if (it != well_names_to_index.end()) {
const int well_index = it->second;
well_data[well_index].type = INJECTOR;
} else {
OPM_THROW(std::runtime_error, "Unseen well name: " << lines[i].well_ << " first seen in WCONINJE");
}
}
}
if (deck.hasField("WCONPROD")) {
const std::vector<WconprodLine>& lines = deck.getWCONPROD().wconprod;
for (size_t i = 0; i < lines.size(); ++i) {
const std::map<std::string, int>::const_iterator it = well_names_to_index.find(lines[i].well_);
if (it != well_names_to_index.end()) {
const int well_index = it->second;
well_data[well_index].type = PRODUCER;
} else {
OPM_THROW(std::runtime_error, "Unseen well name: " << lines[i].well_ << " first seen in WCONPROD");
}
}
}
// Add wells.
for (int w = 0; w < num_wells; ++w) {
const int w_num_perf = wellperf_data[w].size();
std::vector<int> perf_cells(w_num_perf);
std::vector<double> perf_prodind(w_num_perf);
for (int perf = 0; perf < w_num_perf; ++perf) {
perf_cells[perf] = wellperf_data[w][perf].cell;
perf_prodind[perf] = wellperf_data[w][perf].well_index;
}
const double* comp_frac = NULL;
// We initialize all wells with a null component fraction,
// and must (for injection wells) overwrite it later.
int ok = add_well(well_data[w].type, well_data[w].reference_bhp_depth, w_num_perf,
comp_frac, &perf_cells[0], &perf_prodind[0], well_names[w].c_str(), w_);
if (!ok) {
OPM_THROW(std::runtime_error, "Failed adding well " << well_names[w] << " to Wells data structure.");
}
}
// Get WCONINJE data, add injection controls to wells.
// It is allowed to have multiple lines corresponding to
// the same well, in which case the last one encountered
// is the one used.
if (deck.hasField("WCONINJE")) {
const WCONINJE& wconinjes = deck.getWCONINJE();
const int num_wconinjes = wconinjes.wconinje.size();
for (int kw = 0; kw < num_wconinjes; ++kw) {
const WconinjeLine& wci_line = wconinjes.wconinje[kw];
// Extract well name, or the part of the well name that
// comes before the '*'.
std::string name = wci_line.well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
assert(well_data[wix].type == w_->type[wix]);
if (well_data[wix].type != INJECTOR) {
OPM_THROW(std::runtime_error, "Found WCONINJE entry for a non-injector well: " << well_names[wix]);
}
// Add all controls that are present in well.
// First we must clear existing controls, in case the
// current WCONINJE line is modifying earlier controls.
clear_well_controls(wix, w_);
int ok = 1;
int control_pos[5] = { -1, -1, -1, -1, -1 };
if (ok && wci_line.surface_flow_max_rate_ >= 0.0) {
control_pos[WellsManagerDetail::InjectionControl::RATE] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 0.0, 0.0, 0.0 };
if (wci_line.injector_type_ == "WATER") {
distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (wci_line.injector_type_ == "OIL") {
distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (wci_line.injector_type_ == "GAS") {
distr[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
} else {
OPM_THROW(std::runtime_error, "Injector type " << wci_line.injector_type_ << " not supported."
"WellsManager only supports WATER, OIL and GAS injector types.");
}
ok = append_well_controls(SURFACE_RATE, wci_line.surface_flow_max_rate_,
distr, wix, w_);
}
if (ok && wci_line.reservoir_flow_max_rate_ >= 0.0) {
control_pos[WellsManagerDetail::InjectionControl::RESV] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 0.0, 0.0, 0.0 };
if (wci_line.injector_type_ == "WATER") {
distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (wci_line.injector_type_ == "OIL") {
distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (wci_line.injector_type_ == "GAS") {
distr[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
} else {
OPM_THROW(std::runtime_error, "Injector type " << wci_line.injector_type_ << " not supported."
"WellsManager only supports WATER, OIL and GAS injector types.");
}
ok = append_well_controls(RESERVOIR_RATE, wci_line.reservoir_flow_max_rate_,
distr, wix, w_);
}
if (ok && wci_line.BHP_limit_ > 0.0) {
control_pos[WellsManagerDetail::InjectionControl::BHP] = well_controls_get_num(w_->ctrls[wix]);
ok = append_well_controls(BHP, wci_line.BHP_limit_,
NULL, wix, w_);
}
if (ok && wci_line.THP_limit_ > 0.0) {
OPM_THROW(std::runtime_error, "We cannot handle THP limit for well " << well_names[wix]);
}
if (!ok) {
OPM_THROW(std::runtime_error, "Failure occured appending controls for well " << well_names[wix]);
}
WellsManagerDetail::InjectionControl::Mode mode = WellsManagerDetail::InjectionControl::mode(wci_line.control_mode_);
int cpos = control_pos[mode];
if (cpos == -1 && mode != WellsManagerDetail::InjectionControl::GRUP) {
OPM_THROW(std::runtime_error, "Control for " << wci_line.control_mode_ << " not specified in well " << well_names[wix]);
}
// We need to check if the well is shut or not
if (wci_line.open_shut_flag_ == "SHUT") {
cpos = ~cpos;
}
set_current_control(wix, cpos, w_);
// Set well component fraction.
double cf[3] = { 0.0, 0.0, 0.0 };
if (wci_line.injector_type_[0] == 'W') {
if (!pu.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not used, yet found water-injecting well.");
}
cf[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
} else if (wci_line.injector_type_[0] == 'O') {
if (!pu.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil-injecting well.");
}
cf[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
} else if (wci_line.injector_type_[0] == 'G') {
if (!pu.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas-injecting well.");
}
cf[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
}
std::copy(cf, cf + pu.num_phases, w_->comp_frac + wix*pu.num_phases);
}
}
if (!well_found) {
OPM_THROW(std::runtime_error, "Undefined well name: " << wci_line.well_
<< " in WCONINJE");
}
}
}
// Get WCONPROD data
// It is allowed to have multiple lines corresponding to
// the same well, in which case the last one encountered
// is the one used.
if (deck.hasField("WCONPROD")) {
const WCONPROD& wconprods = deck.getWCONPROD();
const int num_wconprods = wconprods.wconprod.size();
for (int kw = 0; kw < num_wconprods; ++kw) {
const WconprodLine& wcp_line = wconprods.wconprod[kw];
std::string name = wcp_line.well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
assert(well_data[wix].type == w_->type[wix]);
if (well_data[wix].type != PRODUCER) {
OPM_THROW(std::runtime_error, "Found WCONPROD entry for a non-producer well: " << well_names[wix]);
}
// Add all controls that are present in well.
// First we must clear existing controls, in case the
// current WCONPROD line is modifying earlier controls.
clear_well_controls(wix, w_);
int control_pos[9] = { -1, -1, -1, -1, -1, -1, -1, -1, -1 };
int ok = 1;
if (ok && wcp_line.oil_max_rate_ >= 0.0) {
if (!pu.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not active and ORAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::ORAT] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
ok = append_well_controls(SURFACE_RATE, -wcp_line.oil_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.water_max_rate_ >= 0.0) {
if (!pu.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not active and WRAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::WRAT] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
ok = append_well_controls(SURFACE_RATE, -wcp_line.water_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.gas_max_rate_ >= 0.0) {
if (!pu.phase_used[BlackoilPhases::Vapour]) {
OPM_THROW(std::runtime_error, "Gas phase not active and GRAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::GRAT] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
ok = append_well_controls(SURFACE_RATE, -wcp_line.gas_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.liquid_max_rate_ >= 0.0) {
if (!pu.phase_used[BlackoilPhases::Aqua]) {
OPM_THROW(std::runtime_error, "Water phase not active and LRAT control specified.");
}
if (!pu.phase_used[BlackoilPhases::Liquid]) {
OPM_THROW(std::runtime_error, "Oil phase not active and LRAT control specified.");
}
control_pos[WellsManagerDetail::ProductionControl::LRAT] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 0.0, 0.0, 0.0 };
distr[pu.phase_pos[BlackoilPhases::Aqua]] = 1.0;
distr[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
ok = append_well_controls(SURFACE_RATE, -wcp_line.liquid_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.reservoir_flow_max_rate_ >= 0.0) {
control_pos[WellsManagerDetail::ProductionControl::RESV] = well_controls_get_num(w_->ctrls[wix]);
double distr[3] = { 1.0, 1.0, 1.0 };
ok = append_well_controls(RESERVOIR_RATE, -wcp_line.reservoir_flow_max_rate_,
distr, wix, w_);
}
if (ok && wcp_line.BHP_limit_ > 0.0) {
control_pos[WellsManagerDetail::ProductionControl::BHP] = well_controls_get_num(w_->ctrls[wix]);
ok = append_well_controls(BHP, wcp_line.BHP_limit_,
NULL, wix, w_);
}
if (ok && wcp_line.THP_limit_ > 0.0) {
OPM_THROW(std::runtime_error, "We cannot handle THP limit for well " << well_names[wix]);
}
if (!ok) {
OPM_THROW(std::runtime_error, "Failure occured appending controls for well " << well_names[wix]);
}
WellsManagerDetail::ProductionControl::Mode mode = WellsManagerDetail::ProductionControl::mode(wcp_line.control_mode_);
int cpos = control_pos[mode];
if (cpos == -1 && mode != WellsManagerDetail::ProductionControl::GRUP) {
OPM_THROW(std::runtime_error, "Control mode type " << mode << " not present in well " << well_names[wix]);
}
// If it's shut, we complement the cpos
if (wcp_line.open_shut_flag_ == "SHUT") {
cpos = ~cpos; // So we can easily retrieve the cpos later
}
set_current_control(wix, cpos, w_);
}
}
if (!well_found) {
OPM_THROW(std::runtime_error, "Undefined well name: " << wcp_line.well_
<< " in WCONPROD");
}
}
}
// Get WELTARG data
if (deck.hasField("WELTARG")) {
OPM_THROW(std::runtime_error, "We currently do not handle WELTARG.");
/*
const WELTARG& weltargs = deck.getWELTARG();
const int num_weltargs = weltargs.weltarg.size();
for (int kw = 0; kw < num_weltargs; ++kw) {
std::string name = weltargs.weltarg[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
well_data[wix].target = weltargs.weltarg[kw].new_value_;
break;
}
}
if (!well_found) {
OPM_THROW(std::runtime_error, "Undefined well name: " << weltargs.weltarg[kw].well_
<< " in WELTARG");
}
}
*/
}
// Debug output.
#define EXTRA_OUTPUT
#ifdef EXTRA_OUTPUT
/*
std::cout << "\t WELL DATA" << std::endl;
for(int i = 0; i< num_wells; ++i) {
std::cout << i << ": " << well_data[i].type << " "
<< well_data[i].control << " " << well_data[i].target
<< std::endl;
}
std::cout << "\n\t PERF DATA" << std::endl;
for(int i=0; i< int(wellperf_data.size()); ++i) {
for(int j=0; j< int(wellperf_data[i].size()); ++j) {
std::cout << i << ": " << wellperf_data[i][j].cell << " "
<< wellperf_data[i][j].well_index << std::endl;
}
}
*/
#endif
if (deck.hasField("WELOPEN")) {
const WELOPEN& welopen = deck.getWELOPEN();
for (size_t i = 0; i < welopen.welopen.size(); ++i) {
WelopenLine line = welopen.welopen[i];
std::string wellname = line.well_;
std::map<std::string, int>::const_iterator it = well_names_to_index.find(wellname);
if (it == well_names_to_index.end()) {
OPM_THROW(std::runtime_error, "Trying to open/shut well with name: \"" << wellname<<"\" but it's not registered under WELSPECS.");
}
const int index = it->second;
if (line.openshutflag_ == "SHUT") {
well_controls_shut_well( w_->ctrls[index] );
} else if (line.openshutflag_ == "OPEN") {
well_controls_open_well( w_->ctrls[index] );
} else {
OPM_THROW(std::runtime_error, "Unknown Open/close keyword: \"" << line.openshutflag_<< "\". Allowed values: OPEN, SHUT.");
}
}
}
// Build the well_collection_ well group hierarchy.
if (deck.hasField("GRUPTREE")) {
std::cout << "Found gruptree" << std::endl;
const GRUPTREE& gruptree = deck.getGRUPTREE();
std::map<std::string, std::string>::const_iterator it = gruptree.tree.begin();
for( ; it != gruptree.tree.end(); ++it) {
well_collection_.addChild(it->first, it->second, deck);
}
}
for (size_t i = 0; i < welspecs.welspecs.size(); ++i) {
WelspecsLine line = welspecs.welspecs[i];
well_collection_.addChild(line.name_, line.group_, deck);
}
// Set the guide rates:
if (deck.hasField("WGRUPCON")) {
std::cout << "Found Wgrupcon" << std::endl;
WGRUPCON wgrupcon = deck.getWGRUPCON();
const std::vector<WgrupconLine>& lines = wgrupcon.wgrupcon;
std::cout << well_collection_.getLeafNodes().size() << std::endl;
for (size_t i = 0; i < lines.size(); i++) {
std::string name = lines[i].well_;
const int wix = well_names_to_index[name];
WellNode& wellnode = *well_collection_.getLeafNodes()[wix];
assert(wellnode.name() == name);
if (well_data[wix].type == PRODUCER) {
wellnode.prodSpec().guide_rate_ = lines[i].guide_rate_;
if (lines[i].phase_ == "OIL") {
wellnode.prodSpec().guide_rate_type_ = ProductionSpecification::OIL;
} else {
OPM_THROW(std::runtime_error, "Guide rate type " << lines[i].phase_ << " specified for producer "
<< name << " in WGRUPCON, cannot handle.");
}
} else if (well_data[wix].type == INJECTOR) {
wellnode.injSpec().guide_rate_ = lines[i].guide_rate_;
if (lines[i].phase_ == "RAT") {
wellnode.injSpec().guide_rate_type_ = InjectionSpecification::RAT;
} else {
OPM_THROW(std::runtime_error, "Guide rate type " << lines[i].phase_ << " specified for injector "
<< name << " in WGRUPCON, cannot handle.");
}
} else {
OPM_THROW(std::runtime_error, "Unknown well type " << well_data[wix].type << " for well " << name);
}
}
}
well_collection_.setWellsPointer(w_);
well_collection_.applyGroupControls();
}
} // end namespace Opm