opm-simulators/opm/simulators/flow/BlackoilModelEbos.hpp

1874 lines
85 KiB
C++
Raw Normal View History

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015, 2016, 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
2023-05-03 06:17:20 -05:00
#include <fmt/format.h>
#include <ebos/eclproblem.hh>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/grid/UnstructuredGrid.h>
2023-06-26 10:37:13 -05:00
#include <opm/grid/common/SubGridPart.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/simulators/aquifers/AquiferGridUtils.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
2023-06-26 10:37:13 -05:00
#include <opm/simulators/flow/partitionCells.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
2023-06-26 10:37:13 -05:00
#include <opm/simulators/flow/SubDomain.hpp>
#include <opm/simulators/linalg/extractMatrix.hpp>
#include <opm/simulators/linalg/ISTLSolverEbos.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/simulators/utils/ComponentName.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
2022-12-13 05:54:27 -06:00
#include <opm/simulators/wells/BlackoilWellModel.hpp>
#include <opm/simulators/wells/WellConnectionAuxiliaryModule.hpp>
#include <dune/common/timer.hh>
2023-06-14 02:18:53 -05:00
#include <fmt/format.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <limits>
2023-06-14 02:18:53 -05:00
#include <type_traits>
2023-03-03 06:49:51 -06:00
#include <tuple>
#include <utility>
#include <vector>
namespace Opm::Properties {
namespace TTag {
struct EclFlowProblem {
using InheritsFrom = std::tuple<FlowTimeSteppingParameters, FlowModelParameters,
FlowNonLinearSolver, EclBaseProblem, BlackOilModel>;
};
}
template<class TypeTag>
struct OutputDir<TypeTag, TTag::EclFlowProblem> {
static constexpr auto value = "";
};
template<class TypeTag>
struct EnableDebuggingChecks<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
// default in flow is to formulate the equations in surface volumes
template<class TypeTag>
struct BlackoilConserveSurfaceVolume<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct UseVolumetricResidual<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EclAquiferModel<TypeTag, TTag::EclFlowProblem> {
using type = BlackoilAquiferModel<TypeTag>;
};
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableBrine<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSaltPrecipitation<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EclWellModel<TypeTag, TTag::EclFlowProblem> {
using type = BlackoilWellModel<TypeTag>;
};
template<class TypeTag>
struct LinearSolverSplice<TypeTag, TTag::EclFlowProblem> {
using type = TTag::FlowIstlSolver;
};
2018-11-12 04:03:54 -06:00
} // namespace Opm::Properties
namespace Opm {
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
template <class TypeTag>
class BlackoilModelEbos
{
public:
// --------- Types and enums ---------
2023-03-03 06:25:46 -06:00
using ModelParameters = BlackoilModelParametersEbos<TypeTag>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
2023-03-03 06:25:46 -06:00
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
static constexpr int numEq = Indices::numEq;
static constexpr int contiSolventEqIdx = Indices::contiSolventEqIdx;
static constexpr int contiZfracEqIdx = Indices::contiZfracEqIdx;
static constexpr int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
static constexpr int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
static constexpr int contiPolymerMWEqIdx = Indices::contiPolymerMWEqIdx;
static constexpr int contiFoamEqIdx = Indices::contiFoamEqIdx;
static constexpr int contiBrineEqIdx = Indices::contiBrineEqIdx;
static constexpr int contiMicrobialEqIdx = Indices::contiMicrobialEqIdx;
static constexpr int contiOxygenEqIdx = Indices::contiOxygenEqIdx;
static constexpr int contiUreaEqIdx = Indices::contiUreaEqIdx;
static constexpr int contiBiofilmEqIdx = Indices::contiBiofilmEqIdx;
static constexpr int contiCalciteEqIdx = Indices::contiCalciteEqIdx;
static constexpr int solventSaturationIdx = Indices::solventSaturationIdx;
static constexpr int zFractionIdx = Indices::zFractionIdx;
static constexpr int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
static constexpr int polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
static constexpr int temperatureIdx = Indices::temperatureIdx;
static constexpr int foamConcentrationIdx = Indices::foamConcentrationIdx;
static constexpr int saltConcentrationIdx = Indices::saltConcentrationIdx;
static constexpr int microbialConcentrationIdx = Indices::microbialConcentrationIdx;
static constexpr int oxygenConcentrationIdx = Indices::oxygenConcentrationIdx;
static constexpr int ureaConcentrationIdx = Indices::ureaConcentrationIdx;
static constexpr int biofilmConcentrationIdx = Indices::biofilmConcentrationIdx;
static constexpr int calciteConcentrationIdx = Indices::calciteConcentrationIdx;
2023-03-03 06:25:46 -06:00
using VectorBlockType = Dune::FieldVector<Scalar, numEq>;
using MatrixBlockType = typename SparseMatrixAdapter::MatrixBlock;
using Mat = typename SparseMatrixAdapter::IstlMatrix;
using BVector = Dune::BlockVector<VectorBlockType>;
using ComponentName = ::Opm::ComponentName<FluidSystem,Indices>;
2023-06-14 02:18:53 -05:00
using Domain = SubDomain<Grid>;
2023-03-03 06:25:46 -06:00
using ISTLSolverType = ISTLSolverEbos<TypeTag>;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
BlackoilWellModel<TypeTag>& well_model,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, grid_(ebosSimulator_.vanguard().grid())
, phaseUsage_(phaseUsageFromDeck(eclState()))
, param_( param )
, well_model_ (well_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
2021-12-01 07:00:21 -06:00
, dx_old_(ebosSimulator_.model().numGridDof())
{
// compute global sum of number of cells
global_nc_ = detail::countGlobalCells(grid_);
convergence_reports_.reserve(300); // Often insufficient, but avoids frequent moves.
2023-06-14 02:18:53 -05:00
// TODO: remember to fix!
if (param_.nonlinear_solver_ == "nldd") {
if (terminal_output) {
OpmLog::info("Using Non-Linear Domain Decomposition solver (nldd).");
}
setupSubDomains();
} else if (param_.nonlinear_solver_ == "newton") {
if (terminal_output) {
OpmLog::info("Using Newton nonlinear solver.");
}
} else {
OPM_THROW(std::runtime_error, "Unknown nonlinear solver option: " + param_.nonlinear_solver_);
}
}
2023-06-14 02:18:53 -05:00
bool isParallel() const
{ return grid_.comm().size() > 1; }
2016-11-08 01:46:42 -06:00
2023-06-14 02:18:53 -05:00
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
2023-06-14 02:18:53 -05:00
void setupSubDomains()
{
// Create partitions.
const auto& [partition_vector, num_domains] =
partitionCells(this->grid_,
this->ebosSimulator_.vanguard().schedule().getWellsatEnd(),
this->param_.local_domain_partition_method_,
this->param_.num_local_domains_,
this->param_.local_domain_partition_imbalance_);
2023-06-14 02:18:53 -05:00
// Scan through partitioning to get correct size for each.
std::vector<int> sizes(num_domains, 0);
for (const auto& p : partition_vector) {
++sizes[p];
}
// Set up correctly sized vectors of entity seeds and of indices for each partition.
using EntitySeed = typename Grid::template Codim<0>::EntitySeed;
std::vector<std::vector<EntitySeed>> seeds(num_domains);
std::vector<std::vector<int>> partitions(num_domains);
for (int domain = 0; domain < num_domains; ++domain) {
seeds[domain].resize(sizes[domain]);
partitions[domain].resize(sizes[domain]);
}
// Iterate through grid once, setting the seeds of all partitions.
std::vector<int> count(num_domains, 0);
const auto beg = grid_.template leafbegin<0>();
const auto end = grid_.template leafend<0>();
int cell = 0;
for (auto it = beg; it != end; ++it, ++cell) {
const int p = partition_vector[cell];
seeds[p][count[p]] = it->seed();
partitions[p][count[p]] = cell;
++count[p];
}
assert(count == sizes);
// Create the domains.
for (int index = 0; index < num_domains; ++index) {
std::vector<bool> interior(partition_vector.size(), false);
for (int ix : partitions[index]) {
interior[ix] = true;
}
Dune::SubGridPart<Grid> view {
ebosSimulator_.vanguard().grid(),
std::move(seeds[index])
};
this->domains_.emplace_back(index,
std::move(partitions[index]),
std::move(interior),
std::move(view));
}
// Set up container for the local system matrices.
domain_matrices_.resize(num_domains);
// Set up container for the local linear solvers.
for (int index = 0; index < num_domains; ++index) {
// TODO: The ISTLSolverEbos constructor will make
// parallel structures appropriate for the full grid
// only. This must be addressed before going parallel.
FlowLinearSolverParameters param;
param.template init<TypeTag>(ebosSimulator_.vanguard().eclState().getSimulationConfig().useCPR());
// Override solver type with umfpack if small domain.
// Otherwise hardcode to ILU0
if (domains_[index].cells.size() < 200) {
param.linsolver_ = "umfpack";
} else {
param.linsolver_ = "ilu0";
param.linear_solver_reduction_ = 1e-2;
}
param.linear_solver_print_json_definition_ = false;
domain_linsolvers_.emplace_back(ebosSimulator_, param);
}
assert(int(domains_.size()) == num_domains);
}
/// Called once before each time step.
/// \param[in] timer simulation timer
2020-12-10 06:39:01 -06:00
SimulatorReportSingle prepareStep(const SimulatorTimerInterface& timer)
{
2020-12-10 06:39:01 -06:00
SimulatorReportSingle report;
Dune::Timer perfTimer;
perfTimer.start();
// update the solution variables in ebos
if ( timer.lastStepFailed() ) {
ebosSimulator_.model().updateFailed();
} else {
ebosSimulator_.model().advanceTimeLevel();
}
// Set the timestep size, episode index, and non-linear iteration index
// for ebos explicitly. ebos needs to know the report step/episode index
// because of timing dependent data despite the fact that flow uses its
// own time stepper. (The length of the episode does not matter, though.)
ebosSimulator_.setTime(timer.simulationTimeElapsed());
ebosSimulator_.setTimeStepSize(timer.currentStepLength());
ebosSimulator_.model().newtonMethod().setIterationIndex(0);
ebosSimulator_.problem().beginTimeStep();
unsigned numDof = ebosSimulator_.model().numGridDof();
wasSwitched_.resize(numDof);
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
if (param_.update_equations_scaling_) {
OpmLog::error("Equation scaling not supported");
//updateEquationsScaling();
}
2023-06-14 02:18:53 -05:00
if (!domains_.empty()) {
// Setup domain->well mapping.
wellModel().setupDomains(domains_);
}
2020-12-10 06:39:01 -06:00
report.pre_post_time += perfTimer.stop();
return report;
}
void initialLinearization(SimulatorReportSingle& report,
const int iteration,
const int minIter,
const SimulatorTimerInterface& timer)
{
// ----------- Set up reports and timer -----------
failureReport_ = SimulatorReportSingle();
Dune::Timer perfTimer;
perfTimer.start();
report.total_linearizations = 1;
// ----------- Assemble -----------
try {
report += assembleReservoir(timer, iteration);
report.assemble_time += perfTimer.stop();
}
catch (...) {
report.assemble_time += perfTimer.stop();
failureReport_ += report;
throw; // continue throwing the stick
}
// ----------- Check if converged -----------
std::vector<double> residual_norms;
perfTimer.reset();
perfTimer.start();
// the step is not considered converged until at least minIter iterations is done
{
auto convrep = getConvergence(timer, iteration, residual_norms);
report.converged = convrep.converged() && iteration > minIter;
ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
convergence_reports_.back().report.push_back(std::move(convrep));
// Throw if any NaN or too large residual found.
if (severity == ConvergenceReport::Severity::NotANumber) {
OPM_THROW(NumericalProblem, "NaN residual found!");
} else if (severity == ConvergenceReport::Severity::TooLarge) {
OPM_THROW_NOLOG(NumericalProblem, "Too large residual found!");
}
}
report.update_time += perfTimer.stop();
residual_norms_history_.push_back(residual_norms);
}
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] timer simulation timer
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
template <class NonlinearSolverType>
SimulatorReportSingle nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver)
{
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = 0.0;
convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
convergence_reports_.back().report.reserve(11);
}
2023-06-14 02:18:53 -05:00
if (iteration == 0) {
return nonlinearIterationNewton(iteration, timer, nonlinear_solver);
}
if (param_.nonlinear_solver_ == "nldd") {
return nonlinearIterationNldd(iteration, timer, nonlinear_solver);
} else {
return nonlinearIterationNewton(iteration, timer, nonlinear_solver);
}
}
template <class NonlinearSolverType>
SimulatorReportSingle nonlinearIterationNewton(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver)
{
// ----------- Set up reports and timer -----------
SimulatorReportSingle report;
Dune::Timer perfTimer;
this->initialLinearization(report, iteration, nonlinear_solver.minIter(), timer);
2023-06-14 02:18:53 -05:00
// ----------- If not converged, solve linear system and do Newton update -----------
if (!report.converged) {
perfTimer.reset();
perfTimer.start();
report.total_newton_iterations = 1;
// Compute the nonlinear update.
2021-12-01 07:00:21 -06:00
unsigned nc = ebosSimulator_.model().numGridDof();
BVector x(nc);
2019-04-05 04:21:36 -05:00
// Solve the linear system.
linear_solve_setup_time_ = 0.0;
try {
2023-06-14 02:18:53 -05:00
// Apply the Schur complement of the well model to
// the reservoir linearized equations.
// Note that linearize may throw for MSwells.
wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
ebosSimulator().model().linearizer().residual());
2023-06-14 02:18:53 -05:00
// ---- Solve linear system ----
solveJacobianSystem(x);
2023-06-14 02:18:53 -05:00
2019-04-05 04:21:36 -05:00
report.linear_solve_setup_time += linear_solve_setup_time_;
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
}
catch (...) {
2019-04-05 04:21:36 -05:00
report.linear_solve_setup_time += linear_solve_setup_time_;
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
failureReport_ += report;
throw; // re-throw up
}
perfTimer.reset();
perfTimer.start();
// handling well state update before oscillation treatment is a decision based
// on observation to avoid some big performance degeneration under some circumstances.
// there is no theorectical explanation which way is better for sure.
wellModel().postSolve(x);
if (param_.use_update_stabilization_) {
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
2023-06-14 02:18:53 -05:00
nonlinear_solver.detectOscillations(residual_norms_history_, residual_norms_history_.size() - 1, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
}
2023-06-14 02:18:53 -05:00
// ---- Newton update ----
// Apply the update, with considering model-dependent limitations and
// chopping of the update.
updateSolution(x);
report.update_time += perfTimer.stop();
}
return report;
}
2023-06-14 02:18:53 -05:00
template <class NonlinearSolverType>
SimulatorReportSingle nonlinearIterationNldd(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver)
{
// ----------- Set up reports and timer -----------
SimulatorReportSingle report;
Dune::Timer perfTimer;
this->initialLinearization(report, iteration, nonlinear_solver.minIter(), timer);
2023-06-14 02:18:53 -05:00
if (report.converged) {
return report;
}
// ----------- If not converged, do an NLDD iteration -----------
auto& solution = ebosSimulator().model().solution(0);
auto initial_solution = solution;
auto locally_solved = initial_solution;
// ----------- Decide on an ordering for the domains -----------
const auto domain_order = this->getSubdomainOrder();
2023-06-14 02:18:53 -05:00
// ----------- Solve each domain separately -----------
std::vector<SimulatorReportSingle> domain_reports(domains_.size());
for (const int domain_index : domain_order) {
const auto& domain = domains_[domain_index];
SimulatorReportSingle local_report;
switch (param_.local_solve_approach_) {
case DomainSolveApproach::Jacobi:
solveDomainJacobi(solution, locally_solved, local_report,
iteration, timer, domain);
break;
default:
case DomainSolveApproach::GaussSeidel:
solveDomainGaussSeidel(solution, locally_solved, local_report,
iteration, timer, domain);
break;
2023-06-14 02:18:53 -05:00
}
// This should have updated the global matrix to be
// dR_i/du_j evaluated at new local solutions for
// i == j, at old solution for i != j.
if (!local_report.converged) {
// TODO: more proper treatment, including in parallel.
OpmLog::debug("Convergence failure in domain " + std::to_string(domain.index));
}
domain_reports[domain.index] = local_report;
}
// Log summary of local solve convergence to DBG file.
{
int num_converged = 0;
SimulatorReportSingle rep;
for (const auto& dr : domain_reports) {
if (dr.converged) {
++num_converged;
}
rep += dr;
}
std::ostringstream os;
os << fmt::format("Local solves finished. Converged for {}/{} domains.\n",
num_converged, domain_reports.size());
rep.reportFullyImplicit(os, nullptr);
OpmLog::debug(os.str());
local_reports_accumulated_ += rep;
}
if (param_.local_solve_approach_ == DomainSolveApproach::Jacobi) {
2023-06-14 02:18:53 -05:00
solution = locally_solved;
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
}
// Finish with a Newton step.
// Note that the "iteration + 100" is a simple way to avoid entering
// "if (iteration == 0)" and similar blocks, and also makes it a little
// easier to spot the iteration residuals in the DBG file. A more sophisticated
// approach can be done later.
auto rep = nonlinearIterationNewton(iteration + 100, timer, nonlinear_solver);
report += rep;
if (rep.converged) {
report.converged = true;
}
return report;
}
std::pair<SimulatorReportSingle, ConvergenceReport>
solveDomain(const Domain& domain,
const SimulatorTimerInterface& timer,
[[maybe_unused]] const int global_iteration,
2023-06-14 02:18:53 -05:00
const bool initial_assembly_required = false)
{
SimulatorReportSingle report;
Dune::Timer solveTimer;
solveTimer.start();
Dune::Timer detailTimer;
ebosSimulator_.model().newtonMethod().setIterationIndex(0);
// When called, if assembly has already been performed
// with the initial values, we only need to check
// for local convergence. Otherwise, we must do a local
// assembly.
int iter = 0;
if (initial_assembly_required) {
detailTimer.start();
ebosSimulator_.model().newtonMethod().setIterationIndex(iter);
// TODO: we should have a beginIterationLocal function()
// only handling the well model for now
ebosSimulator_.problem().wellModel().assembleDomain(ebosSimulator_.model().newtonMethod().numIterations(),
ebosSimulator_.timeStepSize(),
domain);
// Assemble reservoir locally.
report += assembleReservoirDomain(domain);
2023-06-14 02:18:53 -05:00
report.assemble_time += detailTimer.stop();
}
detailTimer.reset();
detailTimer.start();
std::vector<double> resnorms;
auto convreport = getDomainConvergence(domain, timer, 0, resnorms);
if (convreport.converged()) {
// TODO: set more info, timing etc.
report.converged = true;
return { report, convreport };
}
// We have already assembled for the first iteration,
// but not done the Schur complement for the wells yet.
detailTimer.reset();
detailTimer.start();
wellModel().linearizeDomain(domain,
ebosSimulator().model().linearizer().jacobian(),
ebosSimulator().model().linearizer().residual());
const double tt1 = detailTimer.stop();
report.assemble_time += tt1;
report.assemble_time_well += tt1;
// Local Newton loop.
const int max_iter = param_.max_local_solve_iterations_;
do {
// Solve local linear system.
// Note that x has full size, we expect it to be nonzero only for in-domain cells.
const int nc = grid_.size(0);
BVector x(nc);
detailTimer.reset();
detailTimer.start();
solveJacobianSystemDomain(domain, x);
wellModel().postSolveDomain(x, domain);
report.linear_solve_time += detailTimer.stop();
report.linear_solve_setup_time += linear_solve_setup_time_;
report.total_linear_iterations = linearIterationsLastSolve();
// Update local solution. // TODO: x is still full size, should we optimize it?
detailTimer.reset();
detailTimer.start();
updateDomainSolution(domain, x);
report.update_time += detailTimer.stop();
// Assemble well and reservoir.
detailTimer.reset();
detailTimer.start();
++iter;
ebosSimulator_.model().newtonMethod().setIterationIndex(iter);
// TODO: we should have a beginIterationLocal function()
// only handling the well model for now
// Assemble reservoir locally.
ebosSimulator_.problem().wellModel().assembleDomain(ebosSimulator_.model().newtonMethod().numIterations(),
ebosSimulator_.timeStepSize(),
domain);
report += assembleReservoirDomain(domain);
2023-06-14 02:18:53 -05:00
report.assemble_time += detailTimer.stop();
// Check for local convergence.
detailTimer.reset();
detailTimer.start();
convreport = getDomainConvergence(domain, timer, iter, resnorms);
// apply the Schur complement of the well model to the
// reservoir linearized equations
detailTimer.reset();
detailTimer.start();
wellModel().linearizeDomain(domain,
ebosSimulator().model().linearizer().jacobian(),
ebosSimulator().model().linearizer().residual());
const double tt2 = detailTimer.stop();
report.assemble_time += tt2;
report.assemble_time_well += tt2;
} while (!convreport.converged() && iter <= max_iter);
ebosSimulator_.problem().endIteration();
report.converged = convreport.converged();
report.total_newton_iterations = iter;
report.total_linearizations = iter;
report.total_time = solveTimer.stop();
// TODO: set more info, timing etc.
return { report, convreport };
}
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] timer simulation timer
SimulatorReportSingle afterStep(const SimulatorTimerInterface&)
{
2020-12-10 06:39:01 -06:00
SimulatorReportSingle report;
Dune::Timer perfTimer;
perfTimer.start();
ebosSimulator_.problem().endTimeStep();
2020-12-10 06:39:01 -06:00
report.pre_post_time += perfTimer.stop();
return report;
}
/// Assemble the residual and Jacobian of the nonlinear system.
SimulatorReportSingle assembleReservoir(const SimulatorTimerInterface& /* timer */,
const int iterationIdx)
{
// -------- Mass balance equations --------
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
ebosSimulator_.problem().beginIteration();
ebosSimulator_.model().linearizer().linearizeDomain();
ebosSimulator_.problem().endIteration();
2023-06-14 02:18:53 -05:00
return wellModel().lastReport();
}
2023-06-14 02:18:53 -05:00
/// Assemble the residual and Jacobian of the nonlinear system.
SimulatorReportSingle assembleReservoirDomain(const Domain& domain)
2023-06-14 02:18:53 -05:00
{
// -------- Mass balance equations --------
ebosSimulator_.model().linearizer().linearizeDomain(domain);
return wellModel().lastReport();
}
// compute the "relative" change of the solution between time steps
double relativeChange() const
{
Scalar resultDelta = 0.0;
Scalar resultDenom = 0.0;
const auto& elemMapper = ebosSimulator_.model().elementMapper();
const auto& gridView = ebosSimulator_.gridView();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
unsigned globalElemIdx = elemMapper.index(elem);
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
Scalar pressureNew;
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationNew = 1.0;
2022-11-24 01:27:55 -06:00
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) &&
FluidSystem::numActivePhases() > 1 &&
priVarsNew.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSwitchIdx];
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
priVarsNew.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg) {
assert(Indices::compositionSwitchIdx >= 0 );
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
}
const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
Scalar pressureOld;
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationOld = 1.0;
// NB fix me! adding pressures changes to satutation changes does not make sense
Scalar tmp = pressureNew - pressureOld;
resultDelta += tmp*tmp;
resultDenom += pressureNew*pressureNew;
if (FluidSystem::numActivePhases() > 1) {
if (priVarsOld.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSwitchIdx];
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
}
if (priVarsOld.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg)
{
assert(Indices::compositionSwitchIdx >= 0 );
saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx];
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
}
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
2019-10-11 13:18:53 -05:00
Scalar tmpSat = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
resultDelta += tmpSat*tmpSat;
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
assert(std::isfinite(resultDelta));
assert(std::isfinite(resultDenom));
}
}
}
resultDelta = gridView.comm().sum(resultDelta);
resultDenom = gridView.comm().sum(resultDenom);
if (resultDenom > 0.0)
return resultDelta/resultDenom;
return 0.0;
}
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const
{
2018-11-12 04:03:54 -06:00
return ebosSimulator_.model().newtonMethod().linearSolver().iterations ();
}
2023-06-14 02:18:53 -05:00
void solveJacobianSystemDomain(const Domain& domain, BVector& global_x)
{
Dune::Timer perfTimer;
perfTimer.start();
const Mat& main_matrix = ebosSimulator_.model().linearizer().jacobian().istlMatrix();
if (domain_matrices_[domain.index]) {
Details::copySubMatrix(main_matrix, domain.cells, *domain_matrices_[domain.index]);
} else {
domain_matrices_[domain.index] = std::make_unique<Mat>(Details::extractMatrix(main_matrix, domain.cells));
}
auto& jac = *domain_matrices_[domain.index];
auto res = Details::extractVector(ebosSimulator_.model().linearizer().residual(), domain.cells);
auto x = res;
// set initial guess
global_x = 0.0;
x = 0.0;
auto& linsolver = domain_linsolvers_[domain.index];
linsolver.prepare(jac, res);
linear_solve_setup_time_ = perfTimer.stop();
linsolver.setResidual(res);
linsolver.solve(x);
Details::setGlobal(x, domain.cells, global_x);
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
2018-11-12 04:03:54 -06:00
void solveJacobianSystem(BVector& x)
{
2018-11-12 04:03:54 -06:00
2023-06-14 02:18:53 -05:00
auto& ebosJac = ebosSimulator_.model().linearizer().jacobian().istlMatrix();
2018-11-12 04:03:54 -06:00
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
// set initial guess
x = 0.0;
2018-11-12 04:03:54 -06:00
auto& ebosSolver = ebosSimulator_.model().newtonMethod().linearSolver();
2019-04-05 04:21:36 -05:00
Dune::Timer perfTimer;
perfTimer.start();
ebosSolver.prepare(ebosJac, ebosResid);
2019-04-05 04:21:36 -05:00
linear_solve_setup_time_ = perfTimer.stop();
ebosSolver.setResidual(ebosResid);
// actually, the error needs to be calculated after setResidual in order to
// account for parallelization properly. since the residual of ECFV
// discretizations does not need to be synchronized across processes to be
// consistent, this is not relevant for OPM-flow...
2018-11-12 04:03:54 -06:00
ebosSolver.solve(x);
}
2023-06-14 02:18:53 -05:00
/// Apply an update to the primary variables.
void updateDomainSolution(const Domain& domain, const BVector& dx)
{
auto& ebosNewtonMethod = ebosSimulator_.model().newtonMethod();
SolutionVector& solution = ebosSimulator_.model().solution(/*timeIdx=*/0);
ebosNewtonMethod.update_(/*nextSolution=*/solution,
/*curSolution=*/solution,
/*update=*/dx,
/*resid=*/dx,
domain.cells); // the update routines of the black
// oil model do not care about the
// residual
// if the solution is updated, the intensive quantities need to be recalculated
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view);
}
/// Apply an update to the primary variables.
void updateSolution(const BVector& dx)
{
OPM_TIMEBLOCK(updateSolution);
auto& ebosNewtonMethod = ebosSimulator_.model().newtonMethod();
SolutionVector& solution = ebosSimulator_.model().solution(/*timeIdx=*/0);
ebosNewtonMethod.update_(/*nextSolution=*/solution,
/*curSolution=*/solution,
/*update=*/dx,
/*resid=*/dx); // the update routines of the black
// oil model do not care about the
// residual
// if the solution is updated, the intensive quantities need to be recalculated
{
OPM_TIMEBLOCK(invalidateAndUpdateIntensiveQuantities);
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
2023-03-22 13:17:22 -05:00
ebosSimulator_.problem().eclWriter()->mutableEclOutputModule().invalidateLocalData();
}
}
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const
{
return terminal_output_;
}
std::tuple<double,double> convergenceReduction(Parallel::Communication comm,
const double pvSumLocal,
const double numAquiferPvSumLocal,
std::vector< Scalar >& R_sum,
std::vector< Scalar >& maxCoeff,
std::vector< Scalar >& B_avg)
{
OPM_TIMEBLOCK(convergenceReduction);
// Compute total pore volume (use only owned entries)
double pvSum = pvSumLocal;
double numAquiferPvSum = numAquiferPvSumLocal;
if( comm.size() > 1 )
{
// global reduction
std::vector< Scalar > sumBuffer;
std::vector< Scalar > maxBuffer;
const int numComp = B_avg.size();
sumBuffer.reserve( 2*numComp + 2 ); // +2 for (numAquifer)pvSum
maxBuffer.reserve( numComp );
for( int compIdx = 0; compIdx < numComp; ++compIdx )
{
sumBuffer.push_back( B_avg[ compIdx ] );
sumBuffer.push_back( R_sum[ compIdx ] );
maxBuffer.push_back( maxCoeff[ compIdx ] );
}
// Compute total pore volume
sumBuffer.push_back( pvSum );
sumBuffer.push_back( numAquiferPvSum );
// compute global sum
comm.sum( sumBuffer.data(), sumBuffer.size() );
// compute global max
comm.max( maxBuffer.data(), maxBuffer.size() );
// restore values to local variables
for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx )
{
B_avg[ compIdx ] = sumBuffer[ buffIdx ];
++buffIdx;
R_sum[ compIdx ] = sumBuffer[ buffIdx ];
}
for( int compIdx = 0; compIdx < numComp; ++compIdx )
{
maxCoeff[ compIdx ] = maxBuffer[ compIdx ];
}
// restore global pore volume
pvSum = sumBuffer[sumBuffer.size()-2];
numAquiferPvSum = sumBuffer.back();
}
// return global pore volume
return {pvSum, numAquiferPvSum};
}
/// \brief Get reservoir quantities on this process needed for convergence calculations.
/// \return A pair of the local pore volume of interior cells and the pore volumes
/// of the cells associated with a numerical aquifer.
std::pair<double,double> localConvergenceData(std::vector<Scalar>& R_sum,
std::vector<Scalar>& maxCoeff,
std::vector<Scalar>& B_avg,
std::vector<int>& maxCoeffCell)
{
OPM_TIMEBLOCK(localConvergenceData);
double pvSumLocal = 0.0;
double numAquiferPvSumLocal = 0.0;
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator().gridView();
IsNumericalAquiferCell isNumericalAquiferCell(gridView.grid());
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
2023-06-14 02:18:53 -05:00
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const auto pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) *
ebosModel.dofTotalVolume(cell_idx);
pvSumLocal += pvValue;
if (isNumericalAquiferCell(elem))
{
numAquiferPvSumLocal += pvValue;
}
this->getMaxCoeff(cell_idx, intQuants, fs, ebosResid, pvValue,
B_avg, R_sum, maxCoeff, maxCoeffCell);
2023-06-14 02:18:53 -05:00
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::localConvergenceData() failed: ", grid_.comm());
// compute local average in terms of global number of elements
const int bSize = B_avg.size();
for ( int i = 0; i<bSize; ++i )
{
B_avg[ i ] /= Scalar( global_nc_ );
}
return {pvSumLocal, numAquiferPvSumLocal};
}
// Get reservoir quantities on this process needed for convergence calculations.
std::pair<double, double> localDomainConvergenceData(const Domain& domain,
std::vector<Scalar>& R_sum,
std::vector<Scalar>& maxCoeff,
std::vector<Scalar>& B_avg,
std::vector<int>& maxCoeffCell)
2023-06-14 02:18:53 -05:00
{
double pvSumLocal = 0.0;
double numAquiferPvSumLocal = 0.0;
2023-06-14 02:18:53 -05:00
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = domain.view;
const auto& elemEndIt = gridView.template end</*codim=*/0>();
IsNumericalAquiferCell isNumericalAquiferCell(gridView.grid());
2023-06-14 02:18:53 -05:00
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
if (elemIt->partitionType() != Dune::InteriorEntity) {
continue;
}
const auto& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
2023-06-14 02:18:53 -05:00
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
2023-06-14 02:18:53 -05:00
const auto& fs = intQuants.fluidState();
const auto pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) *
ebosModel.dofTotalVolume(cell_idx);
2023-06-14 02:18:53 -05:00
pvSumLocal += pvValue;
if (isNumericalAquiferCell(elem))
{
numAquiferPvSumLocal += pvValue;
}
this->getMaxCoeff(cell_idx, intQuants, fs, ebosResid, pvValue,
B_avg, R_sum, maxCoeff, maxCoeffCell);
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::localConvergenceData() failed: ", grid_.comm());
// compute local average in terms of global number of elements
const int bSize = B_avg.size();
for ( int i = 0; i<bSize; ++i )
{
2023-06-14 02:18:53 -05:00
B_avg[ i ] /= Scalar(domain.cells.size());
}
return {pvSumLocal, numAquiferPvSumLocal};
2023-06-14 02:18:53 -05:00
}
double computeCnvErrorPvLocal(const Domain& domain, const std::vector<Scalar>& B_avg, double dt)
{
double errorPV{};
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
for (const int cell_idx : domain.cells)
{
const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume( cell_idx );
const auto& cellResidual = ebosResid[cell_idx];
bool cnvViolated = false;
for (unsigned eqIdx = 0; eqIdx < cellResidual.size(); ++eqIdx)
{
using std::fabs;
Scalar CNV = cellResidual[eqIdx] * dt * B_avg[eqIdx] / pvValue;
cnvViolated = cnvViolated || (fabs(CNV) > param_.tolerance_cnv_);
}
if (cnvViolated)
{
errorPV += pvValue;
}
}
return errorPV;
}
2023-06-14 02:18:53 -05:00
/// \brief Compute the total pore volume of cells violating CNV that are not part
/// of a numerical aquifer.
double computeCnvErrorPv(const std::vector<Scalar>& B_avg, double dt)
{
OPM_TIMEBLOCK(computeCnvErrorPv);
double errorPV{};
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
const auto& gridView = ebosSimulator().gridView();
ElementContext elemCtx(ebosSimulator_);
IsNumericalAquiferCell isNumericalAquiferCell(gridView.grid());
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interiorBorder))
{
// Skip cells of numerical Aquifer
if (isNumericalAquiferCell(elem))
{
continue;
}
elemCtx.updatePrimaryStencil(elem);
2023-06-14 02:18:53 -05:00
// elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume( cell_idx );
const auto& cellResidual = ebosResid[cell_idx];
bool cnvViolated = false;
for (unsigned eqIdx = 0; eqIdx < cellResidual.size(); ++eqIdx)
{
using std::abs;
Scalar CNV = cellResidual[eqIdx] * dt * B_avg[eqIdx] / pvValue;
cnvViolated = cnvViolated || (abs(CNV) > param_.tolerance_cnv_);
}
if (cnvViolated)
{
errorPV += pvValue;
}
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::ComputeCnvError() failed: ", grid_.comm());
return grid_.comm().sum(errorPV);
}
2023-05-03 06:17:20 -05:00
2023-06-14 02:18:53 -05:00
ConvergenceReport getDomainReservoirConvergence(const double reportTime,
const double dt,
const int iteration,
const Domain& domain,
std::vector<Scalar>& B_avg,
std::vector<Scalar>& residual_norms)
{
typedef std::vector< Scalar > Vector;
const int numComp = numEq;
Vector R_sum(numComp, 0.0 );
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
std::vector<int> maxCoeffCell(numComp, -1);
const auto [ pvSum, numAquiferPvSum]
= localDomainConvergenceData(domain, R_sum, maxCoeff, B_avg, maxCoeffCell);
2023-06-14 02:18:53 -05:00
auto cnvErrorPvFraction = computeCnvErrorPvLocal(domain, B_avg, dt);
cnvErrorPvFraction /= (pvSum - numAquiferPvSum);
2023-06-14 02:18:53 -05:00
const double tol_mb = param_.local_tolerance_scaling_mb_ * param_.tolerance_mb_;
// Default value of relaxed_max_pv_fraction_ is 0.03 and min_strict_cnv_iter_ is 0.
// For each iteration, we need to determine whether to use the relaxed CNV tolerance.
// To disable the usage of relaxed CNV tolerance, you can set the relaxed_max_pv_fraction_ to be 0.
const bool use_relaxed = cnvErrorPvFraction < param_.relaxed_max_pv_fraction_ && iteration >= param_.min_strict_cnv_iter_;
// Tighter bound for local convergence should increase the
// likelyhood of: local convergence => global convergence
const double tol_cnv = param_.local_tolerance_scaling_cnv_
* (use_relaxed ? param_.tolerance_cnv_relaxed_ : param_.tolerance_cnv_);
// Finish computation
std::vector<Scalar> CNV(numComp);
std::vector<Scalar> mass_balance_residual(numComp);
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
residual_norms.push_back(CNV[compIdx]);
}
// Create convergence report.
ConvergenceReport report{reportTime};
2023-06-14 02:18:53 -05:00
using CR = ConvergenceReport;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
double res[2] = { mass_balance_residual[compIdx], CNV[compIdx] };
CR::ReservoirFailure::Type types[2] = { CR::ReservoirFailure::Type::MassBalance,
CR::ReservoirFailure::Type::Cnv };
double tol[2] = { tol_mb, tol_cnv };
for (int ii : {0, 1}) {
if (std::isnan(res[ii])) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx});
2023-06-14 02:18:53 -05:00
if ( terminal_output_ ) {
OpmLog::debug("NaN residual for " + compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] > maxResidualAllowed()) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx});
2023-06-14 02:18:53 -05:00
if ( terminal_output_ ) {
OpmLog::debug("Too large residual for " + compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] < 0.0) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
2023-06-14 02:18:53 -05:00
if ( terminal_output_ ) {
OpmLog::debug("Negative residual for " + compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] > tol[ii]) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
2023-06-14 02:18:53 -05:00
}
}
}
// Output of residuals.
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = fmt::format("Domain {}, size {}, containing cell {}\n| Iter",
domain.index, domain.cells.size(), domain.cells[0]);
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " MB(";
msg += compNames_.name(compIdx)[0];
msg += ") ";
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " CNV(";
msg += compNames_.name(compIdx)[0];
msg += ") ";
}
OpmLog::debug(msg);
}
std::ostringstream ss;
ss << "| ";
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << mass_balance_residual[compIdx];
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << CNV[compIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::debug(ss.str());
}
return report;
}
2023-05-03 06:17:20 -05:00
void updateTUNING(const Tuning& tuning) {
param_.tolerance_mb_ = tuning.XXXMBE;
if ( terminal_output_ ) {
OpmLog::debug(fmt::format("Setting BlackoilModelEbos mass balance limit (XXXMBE) to {:.2e}", tuning.XXXMBE));
2023-05-03 06:17:20 -05:00
}
}
ConvergenceReport getReservoirConvergence(const double reportTime,
const double dt,
const int iteration,
std::vector<Scalar>& B_avg,
std::vector<Scalar>& residual_norms)
{
OPM_TIMEBLOCK(getReservoirConvergence);
2023-03-03 06:25:46 -06:00
using Vector = std::vector<Scalar>;
const int numComp = numEq;
Vector R_sum(numComp, 0.0 );
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
2023-06-14 02:18:53 -05:00
std::vector<int> maxCoeffCell(numComp, -1);
const auto [ pvSumLocal, numAquiferPvSumLocal] = localConvergenceData(R_sum, maxCoeff, B_avg, maxCoeffCell);
// compute global sum and max of quantities
const auto [ pvSum, numAquiferPvSum ] =
convergenceReduction(grid_.comm(), pvSumLocal,
numAquiferPvSumLocal,
R_sum, maxCoeff, B_avg);
auto cnvErrorPvFraction = computeCnvErrorPv(B_avg, dt);
cnvErrorPvFraction /= (pvSum - numAquiferPvSum);
const double tol_mb = param_.tolerance_mb_;
// Default value of relaxed_max_pv_fraction_ is 0.03 and min_strict_cnv_iter_ is 0.
// For each iteration, we need to determine whether to use the relaxed CNV tolerance.
// To disable the usage of relaxed CNV tolerance, you can set the relaxed_max_pv_fraction_ to be 0.
const bool use_relaxed = cnvErrorPvFraction < param_.relaxed_max_pv_fraction_ && iteration >= param_.min_strict_cnv_iter_;
const double tol_cnv = use_relaxed ? param_.tolerance_cnv_relaxed_ : param_.tolerance_cnv_;
// Finish computation
std::vector<Scalar> CNV(numComp);
std::vector<Scalar> mass_balance_residual(numComp);
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
residual_norms.push_back(CNV[compIdx]);
}
// Create convergence report.
ConvergenceReport report{reportTime};
using CR = ConvergenceReport;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
double res[2] = { mass_balance_residual[compIdx], CNV[compIdx] };
CR::ReservoirFailure::Type types[2] = { CR::ReservoirFailure::Type::MassBalance,
CR::ReservoirFailure::Type::Cnv };
double tol[2] = { tol_mb, tol_cnv };
for (int ii : {0, 1}) {
if (std::isnan(res[ii])) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx});
if ( terminal_output_ ) {
OpmLog::debug("NaN residual for " + this->compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] > maxResidualAllowed()) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx});
if ( terminal_output_ ) {
OpmLog::debug("Too large residual for " + this->compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] < 0.0) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
if ( terminal_output_ ) {
OpmLog::debug("Negative residual for " + this->compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] > tol[ii]) {
2023-06-26 10:37:13 -05:00
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
}
report.setReservoirConvergenceMetric(types[ii], compIdx, res[ii]);
}
}
// Output of residuals.
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " MB(";
msg += this->compNames_.name(compIdx)[0];
msg += ") ";
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " CNV(";
msg += this->compNames_.name(compIdx)[0];
msg += ") ";
}
2017-10-13 06:29:31 -05:00
OpmLog::debug(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << mass_balance_residual[compIdx];
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << CNV[compIdx];
}
ss.precision(oprec);
ss.flags(oflags);
2017-10-13 06:29:31 -05:00
OpmLog::debug(ss.str());
}
return report;
}
2023-06-14 02:18:53 -05:00
ConvergenceReport getDomainConvergence(const Domain& domain,
const SimulatorTimerInterface& timer,
const int iteration,
std::vector<double>& residual_norms)
{
std::vector<Scalar> B_avg(numEq, 0.0);
auto report = getDomainReservoirConvergence(timer.simulationTimeElapsed(),
timer.currentStepLength(),
iteration,
domain,
B_avg,
residual_norms);
report += wellModel().getDomainWellConvergence(domain, B_avg);
return report;
}
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] timer simulation timer
/// \param[in] iteration current iteration number
/// \param[out] residual_norms CNV residuals by phase
ConvergenceReport getConvergence(const SimulatorTimerInterface& timer,
const int iteration,
std::vector<double>& residual_norms)
{
OPM_TIMEBLOCK(getConvergence);
// Get convergence reports for reservoir and wells.
std::vector<Scalar> B_avg(numEq, 0.0);
auto report = getReservoirConvergence(timer.simulationTimeElapsed(),
timer.currentStepLength(),
iteration, B_avg, residual_norms);
{
OPM_TIMEBLOCK(getWellConvergence);
report += wellModel().getWellConvergence(B_avg, /*checkWellGroupControls*/report.converged());
}
return report;
}
/// The number of active fluid phases in the model.
int numPhases() const
{
return phaseUsage_.num_phases;
}
/// Wrapper required due to not following generic API
template<class T>
std::vector<std::vector<double> >
computeFluidInPlace(const T&, const std::vector<int>& fipnum) const
{
return computeFluidInPlace(fipnum);
}
2018-01-15 06:51:40 -06:00
/// Should not be called
std::vector<std::vector<double> >
2018-01-15 06:51:40 -06:00
computeFluidInPlace(const std::vector<int>& /*fipnum*/) const
2018-12-21 06:51:13 -06:00
{
OPM_TIMEBLOCK(computeFluidInPlace);
2018-01-15 06:51:40 -06:00
//assert(true)
//return an empty vector
std::vector<std::vector<double> > regionValues(0, std::vector<double>(0,0.0));
return regionValues;
}
const Simulator& ebosSimulator() const
{ return ebosSimulator_; }
Simulator& ebosSimulator()
{ return ebosSimulator_; }
/// return the statistics if the nonlinearIteration() method failed
const SimulatorReportSingle& failureReport() const
{ return failureReport_; }
2023-06-14 02:18:53 -05:00
/// return the statistics if the nonlinearIteration() method failed
const SimulatorReportSingle& localAccumulatedReports() const
{ return local_reports_accumulated_; }
const std::vector<StepReport>& stepReports() const
{
return convergence_reports_;
}
protected:
// --------- Data members ---------
Simulator& ebosSimulator_;
const Grid& grid_;
const PhaseUsage phaseUsage_;
static constexpr bool has_solvent_ = getPropValue<TypeTag, Properties::EnableSolvent>();
static constexpr bool has_extbo_ = getPropValue<TypeTag, Properties::EnableExtbo>();
static constexpr bool has_polymer_ = getPropValue<TypeTag, Properties::EnablePolymer>();
static constexpr bool has_polymermw_ = getPropValue<TypeTag, Properties::EnablePolymerMW>();
static constexpr bool has_energy_ = getPropValue<TypeTag, Properties::EnableEnergy>();
static constexpr bool has_foam_ = getPropValue<TypeTag, Properties::EnableFoam>();
static constexpr bool has_brine_ = getPropValue<TypeTag, Properties::EnableBrine>();
static constexpr bool has_micp_ = getPropValue<TypeTag, Properties::EnableMICP>();
ModelParameters param_;
SimulatorReportSingle failureReport_;
2023-06-14 02:18:53 -05:00
SimulatorReportSingle local_reports_accumulated_;
// Well Model
BlackoilWellModel<TypeTag>& well_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
long int global_nc_;
std::vector<std::vector<double>> residual_norms_history_;
double current_relaxation_;
BVector dx_old_;
std::vector<StepReport> convergence_reports_;
ComponentName compNames_{};
2023-06-14 02:18:53 -05:00
std::vector<Domain> domains_;
std::vector<std::unique_ptr<Mat>> domain_matrices_;
std::vector<ISTLSolverType> domain_linsolvers_;
public:
/// return the StandardWells object
BlackoilWellModel<TypeTag>&
wellModel() { return well_model_; }
const BlackoilWellModel<TypeTag>&
wellModel() const { return well_model_; }
void beginReportStep()
2016-08-08 07:58:25 -05:00
{
ebosSimulator_.problem().beginEpisode();
2016-08-08 07:58:25 -05:00
}
void endReportStep()
{
ebosSimulator_.problem().endEpisode();
}
template<class FluidState, class Residual>
void getMaxCoeff(const unsigned cell_idx,
const IntensiveQuantities& intQuants,
const FluidState& fs,
const Residual& ebosResid,
const Scalar pvValue,
std::vector<Scalar>& B_avg,
std::vector<Scalar>& R_sum,
std::vector<Scalar>& maxCoeff,
std::vector<int>& maxCoeffCell)
{
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
B_avg[compIdx] += 1.0 / fs.invB(phaseIdx).value();
const auto R2 = ebosResid[cell_idx][compIdx];
R_sum[compIdx] += R2;
const double Rval = std::abs(R2) / pvValue;
if (Rval > maxCoeff[compIdx]) {
maxCoeff[compIdx] = Rval;
maxCoeffCell[compIdx] = cell_idx;
}
}
if constexpr (has_solvent_) {
B_avg[contiSolventEqIdx] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value();
const auto R2 = ebosResid[cell_idx][contiSolventEqIdx];
R_sum[contiSolventEqIdx] += R2;
maxCoeff[contiSolventEqIdx] = std::max(maxCoeff[contiSolventEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_extbo_) {
B_avg[contiZfracEqIdx] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiZfracEqIdx];
R_sum[ contiZfracEqIdx ] += R2;
maxCoeff[contiZfracEqIdx] = std::max(maxCoeff[contiZfracEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_polymer_) {
B_avg[contiPolymerEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx];
R_sum[contiPolymerEqIdx] += R2;
maxCoeff[contiPolymerEqIdx] = std::max(maxCoeff[contiPolymerEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_foam_) {
B_avg[ contiFoamEqIdx ] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiFoamEqIdx];
R_sum[contiFoamEqIdx] += R2;
maxCoeff[contiFoamEqIdx] = std::max(maxCoeff[contiFoamEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_brine_) {
B_avg[ contiBrineEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiBrineEqIdx];
R_sum[contiBrineEqIdx] += R2;
maxCoeff[contiBrineEqIdx] = std::max(maxCoeff[contiBrineEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_polymermw_) {
static_assert(has_polymer_);
B_avg[contiPolymerMWEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
// the residual of the polymer molecular equation is scaled down by a 100, since molecular weight
// can be much bigger than 1, and this equation shares the same tolerance with other mass balance equations
// TODO: there should be a more general way to determine the scaling-down coefficient
const auto R2 = ebosResid[cell_idx][contiPolymerMWEqIdx] / 100.;
R_sum[contiPolymerMWEqIdx] += R2;
maxCoeff[contiPolymerMWEqIdx] = std::max(maxCoeff[contiPolymerMWEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_energy_) {
B_avg[contiEnergyEqIdx] += 1.0 / (4.182e1); // converting J -> RM3 (entalpy / (cp * deltaK * rho) assuming change of 1e-5K of water
const auto R2 = ebosResid[cell_idx][contiEnergyEqIdx];
R_sum[contiEnergyEqIdx] += R2;
maxCoeff[contiEnergyEqIdx] = std::max(maxCoeff[contiEnergyEqIdx],
std::abs(R2) / pvValue);
}
if constexpr (has_micp_) {
B_avg[contiMicrobialEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R1 = ebosResid[cell_idx][contiMicrobialEqIdx];
R_sum[contiMicrobialEqIdx] += R1;
maxCoeff[contiMicrobialEqIdx] = std::max(maxCoeff[contiMicrobialEqIdx],
std::abs(R1) / pvValue);
B_avg[contiOxygenEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiOxygenEqIdx];
R_sum[contiOxygenEqIdx] += R2;
maxCoeff[contiOxygenEqIdx] = std::max(maxCoeff[contiOxygenEqIdx],
std::abs(R2) / pvValue);
B_avg[contiUreaEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R3 = ebosResid[cell_idx][contiUreaEqIdx];
R_sum[contiUreaEqIdx] += R3;
maxCoeff[contiUreaEqIdx] = std::max(maxCoeff[contiUreaEqIdx],
std::abs(R3) / pvValue);
B_avg[contiBiofilmEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R4 = ebosResid[cell_idx][contiBiofilmEqIdx];
R_sum[contiBiofilmEqIdx] += R4;
maxCoeff[contiBiofilmEqIdx] = std::max(maxCoeff[contiBiofilmEqIdx],
std::abs(R4) / pvValue);
B_avg[contiCalciteEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R5 = ebosResid[cell_idx][contiCalciteEqIdx];
R_sum[contiCalciteEqIdx] += R5;
maxCoeff[contiCalciteEqIdx] = std::max(maxCoeff[contiCalciteEqIdx],
std::abs(R5) / pvValue);
}
}
private:
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
double linear_solve_setup_time_;
//! \brief Returns subdomain ordered according to method and ordering measure.
std::vector<int> getSubdomainOrder()
{
const auto& solution = ebosSimulator().model().solution(0);
std::vector<int> domain_order(domains_.size());
switch (param_.local_solve_approach_) {
case DomainSolveApproach::GaussSeidel: {
switch (param_.local_domain_ordering_) {
case DomainOrderingMeasure::AveragePressure: {
// Use average pressures to order domains.
std::vector<std::pair<double, int>> avgpress_per_domain(domains_.size());
for (const auto& domain : domains_) {
double press_sum = 0.0;
for (const int c : domain.cells) {
press_sum += solution[c][Indices::pressureSwitchIdx];
}
const double avgpress = press_sum / domain.cells.size();
avgpress_per_domain[domain.index] = std::make_pair(avgpress, domain.index);
}
// Lexicographical sort by pressure, then index.
std::sort(avgpress_per_domain.begin(), avgpress_per_domain.end());
// Reverse since we want high-pressure regions solved first.
std::reverse(avgpress_per_domain.begin(), avgpress_per_domain.end());
for (size_t ii = 0; ii < domains_.size(); ++ii) {
domain_order[ii] = avgpress_per_domain[ii].second;
}
break;
}
case DomainOrderingMeasure::Residual: {
// Use maximum residual to order domains.
const auto& residual = ebosSimulator().model().linearizer().residual();
const int num_vars = residual[0].size();
std::vector<std::pair<double, int>> maxres_per_domain(domains_.size());
for (const auto& domain : domains_) {
double maxres = 0.0;
for (const int c : domain.cells) {
for (int ii = 0; ii < num_vars; ++ii) {
maxres = std::max(maxres, std::fabs(residual[c][ii]));
}
}
maxres_per_domain[domain.index] = std::make_pair(maxres, domain.index);
}
// Lexicographical sort by pressure, then index.
std::sort(maxres_per_domain.begin(), maxres_per_domain.end());
// Reverse since we want high-pressure regions solved first.
std::reverse(maxres_per_domain.begin(), maxres_per_domain.end());
for (size_t ii = 0; ii < domains_.size(); ++ii) {
domain_order[ii] = maxres_per_domain[ii].second;
}
}
break;
}
break;
}
case DomainSolveApproach::Jacobi:
default:
std::iota(domain_order.begin(), domain_order.end(), 0);
break;
}
return domain_order;
}
template<class GlobalEqVector>
void solveDomainJacobi(GlobalEqVector& solution,
GlobalEqVector& locally_solved,
SimulatorReportSingle& local_report,
const int iteration,
const SimulatorTimerInterface& timer,
const Domain& domain)
{
auto initial_local_well_primary_vars = wellModel().getPrimaryVarsDomain(domain);
auto initial_local_solution = Details::extractVector(solution, domain.cells);
auto res = solveDomain(domain, timer, iteration);
local_report = res.first;
if (local_report.converged) {
auto local_solution = Details::extractVector(solution, domain.cells);
Details::setGlobal(local_solution, domain.cells, locally_solved);
Details::setGlobal(initial_local_solution, domain.cells, solution);
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view);
} else {
wellModel().setPrimaryVarsDomain(domain, initial_local_well_primary_vars);
Details::setGlobal(initial_local_solution, domain.cells, solution);
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view);
}
}
template<class GlobalEqVector>
void solveDomainGaussSeidel(GlobalEqVector& solution,
GlobalEqVector& locally_solved,
SimulatorReportSingle& local_report,
const int iteration,
const SimulatorTimerInterface& timer,
const Domain& domain)
{
auto initial_local_well_primary_vars = wellModel().getPrimaryVarsDomain(domain);
auto initial_local_solution = Details::extractVector(solution, domain.cells);
auto res = solveDomain(domain, timer, iteration);
local_report = res.first;
if (!local_report.converged) {
// We look at the detailed convergence report to evaluate
// if we should accept the unconverged solution.
const auto& convrep = res.second;
// We do not accept a solution if the wells are unconverged.
if (!convrep.wellFailed()) {
// Calculare the sums of the mb and cnv failures.
double mb_sum = 0.0;
double cnv_sum = 0.0;
for (const auto& rc : convrep.reservoirConvergence()) {
if (rc.type() == ConvergenceReport::ReservoirFailure::Type::MassBalance) {
mb_sum += rc.value();
} else if (rc.type() == ConvergenceReport::ReservoirFailure::Type::Cnv) {
cnv_sum += rc.value();
}
}
// If not too high, we overrule the convergence failure.
const double acceptable_local_mb_sum = 1e-3;
const double acceptable_local_cnv_sum = 1.0;
if (mb_sum < acceptable_local_mb_sum && cnv_sum < acceptable_local_cnv_sum) {
local_report.converged = true;
OpmLog::debug("Accepting solution in unconverged domain " + std::to_string(domain.index));
}
}
}
if (local_report.converged) {
auto local_solution = Details::extractVector(solution, domain.cells);
Details::setGlobal(local_solution, domain.cells, locally_solved);
} else {
wellModel().setPrimaryVarsDomain(domain, initial_local_well_primary_vars);
Details::setGlobal(initial_local_solution, domain.cells, solution);
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0, domain.view);
}
}
2016-08-08 07:58:25 -05:00
public:
std::vector<bool> wasSwitched_;
};
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED