opm-simulators/opm/simulators/wells/WellGroupHelpers.hpp

1218 lines
57 KiB
C++
Raw Normal View History

/*
Copyright 2019 Norce.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLGROUPHELPERS_HEADER_INCLUDED
#define OPM_WELLGROUPHELPERS_HEADER_INCLUDED
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleTypes.hpp>
#include <algorithm>
#include <vector>
namespace Opm {
namespace wellGroupHelpers
{
int groupControlledWells(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const int report_step,
const std::string& group_name,
const std::string& always_included_child);
inline void setCmodeGroup(const Group& group, const Schedule& schedule, const SummaryState& summaryState, const int reportStepIdx, WellStateFullyImplicitBlackoil& wellState) {
for (const std::string& groupName : group.groups()) {
setCmodeGroup( schedule.getGroup(groupName, reportStepIdx), schedule, summaryState, reportStepIdx, wellState);
}
// use NONE as default control
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
if (!wellState.hasInjectionGroupControl(phase, group.name())) {
wellState.setCurrentInjectionGroupControl(phase, group.name(), Group::InjectionCMode::NONE);
}
}
if (!wellState.hasProductionGroupControl(group.name())) {
wellState.setCurrentProductionGroupControl(group.name(), Group::ProductionCMode::NONE);
}
if (group.isInjectionGroup() && schedule.hasWellGroupEvent(group.name(), ScheduleEvents::GROUP_INJECTION_UPDATE, reportStepIdx)) {
for (Phase phase : all) {
if (!group.hasInjectionControl(phase))
continue;
const auto& controls = group.injectionControls(phase, summaryState);
wellState.setCurrentInjectionGroupControl(phase, group.name(), controls.cmode);
}
}
2019-11-28 02:29:55 -06:00
if (group.isProductionGroup() && schedule.hasWellGroupEvent(group.name(), ScheduleEvents::GROUP_PRODUCTION_UPDATE, reportStepIdx)) {
const auto controls = group.productionControls(summaryState);
wellState.setCurrentProductionGroupControl(group.name(), controls.cmode);
}
if (schedule.gConSale(reportStepIdx).has(group.name())) {
wellState.setCurrentInjectionGroupControl(Phase::GAS, group.name(), Group::InjectionCMode::SALE);
}
}
inline void accumulateGroupEfficiencyFactor(const Group& group, const Schedule& schedule, const int reportStepIdx, double& factor) {
factor *= group.getGroupEfficiencyFactor();
if (group.parent() != "FIELD")
accumulateGroupEfficiencyFactor(schedule.getGroup(group.parent(), reportStepIdx), schedule, reportStepIdx, factor);
}
inline double sumWellPhaseRates(const std::vector<double>& rates, const Group& group, const Schedule& schedule, const WellStateFullyImplicitBlackoil& wellState, const int reportStepIdx, const int phasePos,
const bool injector) {
double rate = 0.0;
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
rate += groupTmp.getGroupEfficiencyFactor()*sumWellPhaseRates(rates, groupTmp, schedule, wellState, reportStepIdx, phasePos, injector);
}
const auto& end = wellState.wellMap().end();
for (const std::string& wellName : group.wells()) {
const auto& it = wellState.wellMap().find( wellName );
if (it == end) // the well is not found
continue;
int well_index = it->second[0];
const auto& wellEcl = schedule.getWell(wellName, reportStepIdx);
//only count producers or injectors
if ( (wellEcl.isProducer() && injector) || (wellEcl.isInjector() && !injector))
continue;
if (wellEcl.getStatus() == Well::Status::SHUT)
continue;
double factor = wellEcl.getEfficiencyFactor();
const auto wellrate_index = well_index * wellState.numPhases();
if (injector)
rate += factor * rates[ wellrate_index + phasePos];
else
rate -= factor * rates[ wellrate_index + phasePos];
}
return rate;
}
inline double sumWellRates(const Group& group, const Schedule& schedule, const WellStateFullyImplicitBlackoil& wellState, const int reportStepIdx, const int phasePos, const bool injector) {
return sumWellPhaseRates(wellState.wellRates(), group, schedule, wellState, reportStepIdx, phasePos, injector);
}
inline double sumWellResRates(const Group& group, const Schedule& schedule, const WellStateFullyImplicitBlackoil& wellState, const int reportStepIdx, const int phasePos, const bool injector) {
return sumWellPhaseRates(wellState.wellReservoirRates(), group, schedule, wellState, reportStepIdx, phasePos, injector);
}
inline double sumSolventRates(const Group& group, const Schedule& schedule, const WellStateFullyImplicitBlackoil& wellState, const int reportStepIdx, const bool injector) {
2019-09-23 08:15:55 -05:00
double rate = 0.0;
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
2019-09-23 08:15:55 -05:00
rate += groupTmp.getGroupEfficiencyFactor()*sumSolventRates(groupTmp, schedule, wellState, reportStepIdx, injector);
}
const auto& end = wellState.wellMap().end();
for (const std::string& wellName : group.wells()) {
const auto& it = wellState.wellMap().find( wellName );
if (it == end) // the well is not found
continue;
int well_index = it->second[0];
const auto& wellEcl = schedule.getWell(wellName, reportStepIdx);
2019-09-23 08:15:55 -05:00
//only count producers or injectors
if ( (wellEcl.isProducer() && injector) || (wellEcl.isInjector() && !injector))
continue;
if (wellEcl.getStatus() == Well::Status::SHUT)
2019-09-23 08:15:55 -05:00
continue;
double factor = wellEcl.getEfficiencyFactor();
if (injector)
rate += factor * wellState.solventWellRate(well_index);
else
rate -= factor * wellState.solventWellRate(well_index);
}
return rate;
}
inline void updateGroupTargetReduction(const Group& group, const Schedule& schedule, const int reportStepIdx, const bool isInjector, const PhaseUsage& pu, const WellStateFullyImplicitBlackoil& wellStateNupcol, WellStateFullyImplicitBlackoil& wellState, std::vector<double>& groupTargetReduction)
{
const int np = wellState.numPhases();
for (const std::string& subGroupName : group.groups()) {
std::vector<double> subGroupTargetReduction(np, 0.0);
const Group& subGroup = schedule.getGroup(subGroupName, reportStepIdx);
updateGroupTargetReduction(subGroup, schedule, reportStepIdx, isInjector, pu, wellStateNupcol, wellState, subGroupTargetReduction);
// accumulate group contribution from sub group
if (isInjector) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(phase, subGroupName);
int phasePos;
2020-01-23 04:20:06 -06:00
if (phase == Phase::GAS && pu.phase_used[BlackoilPhases::Vapour] )
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
else if (phase == Phase::OIL && pu.phase_used[BlackoilPhases::Liquid])
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
else if (phase == Phase::WATER && pu.phase_used[BlackoilPhases::Aqua] )
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
else
2020-01-23 04:20:06 -06:00
continue;
if (currentGroupControl != Group::InjectionCMode::FLD &&
currentGroupControl != Group::InjectionCMode::NONE) {
// Subgroup is under individual control.
groupTargetReduction[phasePos] += sumWellRates(subGroup, schedule, wellStateNupcol, reportStepIdx, phasePos, isInjector);
} else {
groupTargetReduction[phasePos] += subGroupTargetReduction[phasePos];
}
}
} else {
const Group::ProductionCMode& currentGroupControl = wellState.currentProductionGroupControl(subGroupName);
const bool individual_control = (currentGroupControl != Group::ProductionCMode::FLD &&
currentGroupControl != Group::ProductionCMode::NONE);
const int num_group_controlled_wells = groupControlledWells(schedule, wellStateNupcol, reportStepIdx, subGroupName, "");
if (individual_control || num_group_controlled_wells == 0) {
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] += sumWellRates(subGroup, schedule, wellStateNupcol, reportStepIdx, phase, isInjector);
}
} else {
// or accumulate directly from the wells if controled from its parents
for (int phase = 0; phase < np; phase++) {
// groupTargetReduction[phase] += subGroupTargetReduction[phase];
}
}
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.isProducer() && isInjector)
continue;
if (wellTmp.isInjector() && !isInjector)
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
const auto& end = wellState.wellMap().end();
const auto& it = wellState.wellMap().find( wellName );
if (it == end) // the well is not found
continue;
int well_index = it->second[0];
const auto wellrate_index = well_index * wellState.numPhases();
const double efficiency = wellTmp.getEfficiencyFactor();
// add contributino from wells not under group control
if (isInjector) {
if (wellState.currentInjectionControls()[well_index] != Well::InjectorCMode::GRUP)
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] += wellStateNupcol.wellRates()[wellrate_index + phase] * efficiency;
}
} else {
if (wellState.currentProductionControls()[well_index] != Well::ProducerCMode::GRUP)
for (int phase = 0; phase < np; phase++) {
groupTargetReduction[phase] -= wellStateNupcol.wellRates()[wellrate_index + phase] * efficiency;
}
}
}
const double groupEfficiency = group.getGroupEfficiencyFactor();
for (double& elem : groupTargetReduction) {
elem *= groupEfficiency;
}
if (isInjector)
wellState.setCurrentInjectionGroupReductionRates(group.name(), groupTargetReduction);
else
wellState.setCurrentProductionGroupReductionRates(group.name(), groupTargetReduction);
}
2019-12-12 02:22:37 -06:00
template <class Comm>
inline void updateGuideRateForGroups(const Group& group, const Schedule& schedule, const PhaseUsage& pu, const int reportStepIdx, const double& simTime, const bool isInjector, WellStateFullyImplicitBlackoil& wellState, const Comm& comm, GuideRate* guideRate, std::vector<double>& pot)
{
const int np = pu.num_phases;
for (const std::string& groupName : group.groups()) {
std::vector<double> thisPot(np, 0.0);
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
2019-12-12 02:22:37 -06:00
updateGuideRateForGroups(groupTmp, schedule, pu, reportStepIdx, simTime, isInjector, wellState, comm, guideRate, thisPot);
// accumulate group contribution from sub group unconditionally
if (isInjector) {
const Phase all[] = {Phase::WATER, Phase::OIL, Phase::GAS};
for (Phase phase : all) {
const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(phase, groupName);
int phasePos;
2020-01-23 04:20:06 -06:00
if (phase == Phase::GAS && pu.phase_used[BlackoilPhases::Vapour] )
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
else if (phase == Phase::OIL && pu.phase_used[BlackoilPhases::Liquid])
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
else if (phase == Phase::WATER && pu.phase_used[BlackoilPhases::Aqua] )
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
else
2020-01-23 04:20:06 -06:00
continue;
pot[phasePos] += thisPot[phasePos];
}
} else {
const Group::ProductionCMode& currentGroupControl = wellState.currentProductionGroupControl(groupName);
if (currentGroupControl != Group::ProductionCMode::FLD && currentGroupControl != Group::ProductionCMode::NONE) {
continue;
}
for (int phase = 0; phase < np; phase++) {
pot[phase] += thisPot[phase];
}
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.isProducer() && isInjector)
continue;
if (wellTmp.isInjector() && !isInjector)
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
const auto& end = wellState.wellMap().end();
const auto& it = wellState.wellMap().find( wellName );
if (it == end) // the well is not found
continue;
int well_index = it->second[0];
const auto wellrate_index = well_index * wellState.numPhases();
// add contribution from wells unconditionally
for (int phase = 0; phase < np; phase++) {
pot[phase] += wellState.wellPotentials()[wellrate_index + phase];
}
}
double oilPot = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid])
oilPot = pot [ pu.phase_pos[BlackoilPhases::Liquid]];
2019-12-12 02:22:37 -06:00
double gasPot = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour])
gasPot = pot [ pu.phase_pos[BlackoilPhases::Vapour]];
double waterPot = 0.0;
if (pu.phase_used[BlackoilPhases::Aqua])
waterPot = pot [pu.phase_pos[BlackoilPhases::Aqua]];
const double gefac = group.getGroupEfficiencyFactor();
oilPot = comm.sum(oilPot) * gefac;
gasPot = comm.sum(gasPot) * gefac;
waterPot = comm.sum(waterPot) * gefac;
2019-12-12 02:22:37 -06:00
if (isInjector) {
wellState.setCurrentGroupInjectionPotentials(group.name(), pot);
} else {
guideRate->compute(group.name(), reportStepIdx, simTime, oilPot, gasPot, waterPot);
}
}
2019-12-12 02:22:37 -06:00
template <class Comm>
inline void updateGuideRatesForWells(const Schedule& schedule, const PhaseUsage& pu, const int reportStepIdx, const double& simTime, const WellStateFullyImplicitBlackoil& wellState, const Comm& comm, GuideRate* guideRate) {
const auto& end = wellState.wellMap().end();
for (const auto& well : schedule.getWells(reportStepIdx)) {
double oilpot = 0.0;
double gaspot = 0.0;
double waterpot = 0.0;
const auto& it = wellState.wellMap().find( well.name());
if (it != end) { // the well is found
int well_index = it->second[0];
const auto wpot = wellState.wellPotentials().data() + well_index*wellState.numPhases();
if (pu.phase_used[BlackoilPhases::Liquid] > 0)
oilpot = wpot[pu.phase_pos[BlackoilPhases::Liquid]];
if (pu.phase_used[BlackoilPhases::Vapour] > 0)
gaspot = wpot[pu.phase_pos[BlackoilPhases::Vapour]];
if (pu.phase_used[BlackoilPhases::Aqua] > 0)
waterpot = wpot[pu.phase_pos[BlackoilPhases::Aqua]];
}
const double wefac = well.getEfficiencyFactor();
oilpot = comm.sum(oilpot) * wefac;
gaspot = comm.sum(gaspot) * wefac;
waterpot = comm.sum(waterpot) * wefac;
2019-12-12 02:22:37 -06:00
guideRate->compute(well.name(), reportStepIdx, simTime, oilpot, gaspot, waterpot);
}
}
inline void updateVREPForGroups(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellStateNupcol, WellStateFullyImplicitBlackoil& wellState) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateVREPForGroups(groupTmp, schedule, reportStepIdx, wellStateNupcol, wellState);
}
const int np = wellState.numPhases();
double resv = 0.0;
for (int phase = 0; phase < np; ++phase) {
2019-12-17 01:49:47 -06:00
resv += sumWellPhaseRates(wellStateNupcol.wellReservoirRates(), group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ false);
}
wellState.setCurrentInjectionVREPRates(group.name(), resv);
}
2020-01-30 09:10:23 -06:00
2020-01-23 07:26:02 -06:00
inline void updateReservoirRatesInjectionGroups(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellStateNupcol, WellStateFullyImplicitBlackoil& wellState) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateReservoirRatesInjectionGroups(groupTmp, schedule, reportStepIdx, wellStateNupcol, wellState);
}
const int np = wellState.numPhases();
std::vector<double> resv(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
resv[phase] = sumWellPhaseRates(wellStateNupcol.wellReservoirRates(), group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ true);
}
wellState.setCurrentInjectionGroupReservoirRates(group.name(), resv);
}
inline void updateWellRates(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellStateNupcol, WellStateFullyImplicitBlackoil& wellState) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateWellRates(groupTmp, schedule, reportStepIdx, wellStateNupcol, wellState);
}
const int np = wellState.numPhases();
const auto& end = wellState.wellMap().end();
for (const std::string& wellName : group.wells()) {
std::vector<double> rates(np, 0.0);
const auto& it = wellState.wellMap().find(wellName);
if (it != end) { // the well is found on this node
int well_index = it->second[0];
for (int phase = 0; phase < np; ++phase) {
rates[phase] = wellStateNupcol.wellRates()[well_index*np + phase];
}
}
wellState.setCurrentWellRates(wellName, rates);
}
}
inline void updateGroupProductionRates(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellStateNupcol, WellStateFullyImplicitBlackoil& wellState) {
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateGroupProductionRates(groupTmp, schedule, reportStepIdx, wellStateNupcol, wellState);
}
const int np = wellState.numPhases();
std::vector<double> rates(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
rates[phase] = sumWellPhaseRates(wellStateNupcol.wellRates(), group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ false);
}
wellState.setCurrentProductionGroupRates(group.name(), rates);
}
inline void updateREINForGroups(const Group& group, const Schedule& schedule, const int reportStepIdx, const PhaseUsage& pu, const SummaryState& st, const WellStateFullyImplicitBlackoil& wellStateNupcol, WellStateFullyImplicitBlackoil& wellState) {
const int np = wellState.numPhases();
for (const std::string& groupName : group.groups()) {
const Group& groupTmp = schedule.getGroup(groupName, reportStepIdx);
updateREINForGroups(groupTmp, schedule, reportStepIdx, pu, st, wellStateNupcol, wellState);
}
std::vector<double> rein(np, 0.0);
for (int phase = 0; phase < np; ++phase) {
2019-12-17 01:49:47 -06:00
rein[phase] = sumWellPhaseRates(wellStateNupcol.wellRates(), group, schedule, wellState, reportStepIdx, phase, /*isInjector*/ false);
}
2019-11-25 04:10:11 -06:00
// add import rate and substract consumption rate for group for gas
if (schedule.gConSump(reportStepIdx).has(group.name())) {
const auto& gconsump = schedule.gConSump(reportStepIdx).get(group.name(), st);
2019-11-25 04:10:11 -06:00
if (pu.phase_used[BlackoilPhases::Vapour]) {
rein[pu.phase_pos[BlackoilPhases::Vapour]] += gconsump.import_rate;
rein[pu.phase_pos[BlackoilPhases::Vapour]] -= gconsump.consumption_rate;
2019-11-25 04:10:11 -06:00
}
}
wellState.setCurrentInjectionREINRates(group.name(), rein);
}
inline GuideRate::RateVector getRateVector(const WellStateFullyImplicitBlackoil& well_state, const PhaseUsage& pu, const std::string& name) {
const std::vector<double>& rates = well_state.currentWellRates(name);
double oilRate = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid])
oilRate = rates[pu.phase_pos[BlackoilPhases::Liquid]];
2020-03-23 10:14:31 -05:00
double gasRate = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour])
gasRate = rates[pu.phase_pos[BlackoilPhases::Vapour]];
2020-03-23 10:14:31 -05:00
double waterRate = 0.0;
if (pu.phase_used[BlackoilPhases::Aqua])
waterRate = rates[pu.phase_pos[BlackoilPhases::Aqua]];
2020-03-23 10:14:31 -05:00
return GuideRate::RateVector{oilRate, gasRate, waterRate};
}
2019-12-12 02:22:37 -06:00
inline double getGuideRate(const std::string& name,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const int reportStepIdx,
const GuideRate* guideRate,
2020-03-23 10:14:31 -05:00
const GuideRateModel::Target target,
const PhaseUsage& pu)
{
if (schedule.hasWell(name, reportStepIdx) || guideRate->has(name)) {
2020-03-23 10:14:31 -05:00
return guideRate->get(name, target, getRateVector(wellState, pu, name));
}
double totalGuideRate = 0.0;
const Group& group = schedule.getGroup(name, reportStepIdx);
for (const std::string& groupName : group.groups()) {
const Group::ProductionCMode& currentGroupControl = wellState.currentProductionGroupControl(groupName);
if (currentGroupControl == Group::ProductionCMode::FLD || currentGroupControl == Group::ProductionCMode::NONE) {
// accumulate from sub wells/groups
2020-03-23 10:14:31 -05:00
totalGuideRate += getGuideRate(groupName, schedule, wellState, reportStepIdx, guideRate, target, pu);
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (wellTmp.isInjector())
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
// Only count wells under group control or the ru
if (!wellState.isProductionGrup(wellName))
continue;
2020-03-23 10:14:31 -05:00
totalGuideRate += guideRate->get(wellName, target, getRateVector(wellState, pu, wellName));
}
return totalGuideRate;
}
inline double getGuideRateInj(const std::string& name,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const int reportStepIdx,
const GuideRate* guideRate,
const GuideRateModel::Target target,
2020-03-23 10:14:31 -05:00
const Phase& injectionPhase,
const PhaseUsage& pu)
{
if (schedule.hasWell(name, reportStepIdx)) {
2020-03-23 10:14:31 -05:00
return guideRate->get(name, target, getRateVector(wellState, pu, name));
}
double totalGuideRate = 0.0;
const Group& group = schedule.getGroup(name, reportStepIdx);
for (const std::string& groupName : group.groups()) {
const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(injectionPhase, groupName);
if (currentGroupControl == Group::InjectionCMode::FLD || currentGroupControl == Group::InjectionCMode::NONE) {
// accumulate from sub wells/groups
2020-03-23 10:14:31 -05:00
totalGuideRate += getGuideRateInj(groupName, schedule, wellState, reportStepIdx, guideRate, target, injectionPhase, pu);
}
}
for (const std::string& wellName : group.wells()) {
const auto& wellTmp = schedule.getWell(wellName, reportStepIdx);
if (!wellTmp.isInjector())
continue;
if (wellTmp.getStatus() == Well::Status::SHUT)
continue;
// Only count wells under group control or the ru
if (!wellState.isInjectionGrup(wellName))
continue;
2020-03-23 10:14:31 -05:00
totalGuideRate += guideRate->get(wellName, target, getRateVector(wellState, pu, wellName));
}
return totalGuideRate;
}
inline int
groupControlledWells(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const int report_step,
const std::string& group_name,
const std::string& always_included_child)
{
const Group& group = schedule.getGroup(group_name, report_step);
int num_wells = 0;
for (const std::string& child_group : group.groups()) {
const auto ctrl = well_state.currentProductionGroupControl(child_group);
const bool included = (ctrl == Group::ProductionCMode::FLD) || (ctrl == Group::ProductionCMode::NONE)
|| (child_group == always_included_child);
if (included) {
num_wells += groupControlledWells(schedule, well_state, report_step, child_group, always_included_child);
}
}
for (const std::string& child_well : group.wells()) {
const bool included = (well_state.isProductionGrup(child_well)) || (child_well == always_included_child);
if (included) {
++num_wells;
}
}
return num_wells;
}
class FractionCalculator
{
public:
FractionCalculator(const Schedule& schedule,
const WellStateFullyImplicitBlackoil& well_state,
const int report_step,
const GuideRate* guide_rate,
2020-03-23 10:14:31 -05:00
const GuideRateModel::Target target,
const PhaseUsage& pu)
: schedule_(schedule)
, well_state_(well_state)
, report_step_(report_step)
, guide_rate_(guide_rate)
, target_(target)
2020-03-23 10:14:31 -05:00
, pu_(pu)
{
}
double fraction(const std::string& name,
const std::string& control_group_name,
const bool always_include_this)
{
double fraction = 1.0;
std::string current = name;
while (current != control_group_name) {
fraction *= localFraction(current, always_include_this ? name : "");
current = parent(current);
}
return fraction;
}
double localFraction(const std::string& name, const std::string& always_included_child)
{
const double my_guide_rate = guideRate(name, always_included_child);
const Group& parent_group = schedule_.getGroup(parent(name), report_step_);
const double total_guide_rate = guideRateSum(parent_group, always_included_child);
assert(total_guide_rate >= my_guide_rate);
const double guide_rate_epsilon = 1e-12;
return (total_guide_rate > guide_rate_epsilon)
? my_guide_rate / total_guide_rate
: 0.0;
}
private:
std::string parent(const std::string& name)
{
if (schedule_.hasWell(name)) {
return schedule_.getWell(name, report_step_).groupName();
} else {
return schedule_.getGroup(name, report_step_).parent();
}
}
double guideRateSum(const Group& group, const std::string& always_included_child)
{
double total_guide_rate = 0.0;
for (const std::string& child_group : group.groups()) {
const auto ctrl = well_state_.currentProductionGroupControl(child_group);
const bool included = (ctrl == Group::ProductionCMode::FLD)
|| (ctrl == Group::ProductionCMode::NONE)
|| (child_group == always_included_child);
if (included) {
total_guide_rate += guideRate(child_group, always_included_child);
}
}
for (const std::string& child_well : group.wells()) {
const bool included = (well_state_.isProductionGrup(child_well))
|| (child_well == always_included_child);
if (included) {
total_guide_rate += guideRate(child_well, always_included_child);
}
}
return total_guide_rate;
}
double guideRate(const std::string& name, const std::string& always_included_child)
{
if (schedule_.hasWell(name, report_step_)) {
2020-03-23 10:14:31 -05:00
return guide_rate_->get(name, target_, getRateVector(well_state_, pu_, name));
} else {
if (groupControlledWells(name, always_included_child) > 0) {
if (guide_rate_->has(name)) {
2020-03-23 10:14:31 -05:00
return guide_rate_->get(name, target_, getGroupRateVector(name));
} else {
// We are a group, with default guide rate.
// Compute guide rate by accumulating our children's guide rates.
// (only children not under individual control though).
const Group& group = schedule_.getGroup(name, report_step_);
return guideRateSum(group, always_included_child);
}
} else {
// No group-controlled subordinate wells.
return 0.0;
}
}
}
int groupControlledWells(const std::string& group_name, const std::string& always_included_child)
{
/*
const Group& group = schedule_.getGroup(group_name, report_step_);
int num_wells = 0;
for (const std::string& child_group : group.groups()) {
const auto ctrl = well_state_.currentProductionGroupControl(child_group);
const bool included = (ctrl == Group::ProductionCMode::FLD)
|| (ctrl == Group::ProductionCMode::NONE)
|| (child_group == always_included_child);
if (included) {
num_wells += groupControlledWells(child_group, always_included_child);
}
}
for (const std::string& child_well : group.wells()) {
const bool included = (well_state_.isProductionGrup(child_well))
|| (child_well == always_included_child);
if (included) {
++num_wells;
}
}
return num_wells;
*/
return ::Opm::wellGroupHelpers::groupControlledWells(schedule_, well_state_, report_step_, group_name, always_included_child);
}
2020-03-23 10:14:31 -05:00
inline GuideRate::RateVector getGroupRateVector(const std::string& group_name) {
2020-03-23 10:14:31 -05:00
std::vector<double> groupRates = well_state_.currentProductionGroupRates(group_name);
double oilRate = 0.0;
if (pu_.phase_used[BlackoilPhases::Liquid])
oilRate = groupRates[pu_.phase_pos[BlackoilPhases::Liquid]];
2020-03-23 10:14:31 -05:00
double gasRate = 0.0;
if (pu_.phase_used[BlackoilPhases::Vapour])
gasRate = groupRates[pu_.phase_pos[BlackoilPhases::Vapour]];
2020-03-23 10:14:31 -05:00
double waterRate = 0.0;
if (pu_.phase_used[BlackoilPhases::Aqua])
waterRate = groupRates[pu_.phase_pos[BlackoilPhases::Aqua]];
return GuideRate::RateVector{oilRate, gasRate, waterRate};
}
2020-03-23 10:14:31 -05:00
const Schedule& schedule_;
const WellStateFullyImplicitBlackoil& well_state_;
int report_step_;
const GuideRate* guide_rate_;
GuideRateModel::Target target_;
2020-03-23 10:14:31 -05:00
PhaseUsage pu_;
};
inline double fractionFromGuideRates(const std::string& name,
const std::string& controlGroupName,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const int reportStepIdx,
const GuideRate* guideRate,
const GuideRateModel::Target target,
const PhaseUsage& pu,
const bool alwaysIncludeThis = false)
{
2020-03-23 10:14:31 -05:00
FractionCalculator calc(schedule, wellState, reportStepIdx, guideRate, target, pu);
return calc.fraction(name, controlGroupName, alwaysIncludeThis);
}
inline double fractionFromInjectionPotentials(const std::string& name,
const std::string& controlGroupName,
const Schedule& schedule,
const WellStateFullyImplicitBlackoil& wellState,
const int reportStepIdx,
const GuideRate* guideRate,
const GuideRateModel::Target target,
const PhaseUsage& pu,
const Phase& injectionPhase,
const bool alwaysIncludeThis = false)
{
2020-03-23 10:14:31 -05:00
double thisGuideRate = getGuideRateInj(name, schedule, wellState, reportStepIdx, guideRate, target, injectionPhase, pu);
double controlGroupGuideRate = getGuideRateInj(controlGroupName, schedule, wellState, reportStepIdx, guideRate, target, injectionPhase, pu);
if (alwaysIncludeThis)
controlGroupGuideRate += thisGuideRate;
assert(controlGroupGuideRate >= thisGuideRate);
const double guideRateEpsilon = 1e-12;
return (controlGroupGuideRate > guideRateEpsilon)
? thisGuideRate / controlGroupGuideRate
: 0.0;
}
template <class RateConverterType>
inline std::pair<bool, double> checkGroupConstraintsInj(const std::string& name,
const std::string& parent,
const Group& group,
const WellStateFullyImplicitBlackoil& wellState,
const int reportStepIdx,
const GuideRate* guideRate,
const double* rates,
Phase injectionPhase,
const PhaseUsage& pu,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
const RateConverterType& rateConverter,
const int pvtRegionIdx,
DeferredLogger& deferred_logger)
{
// When called for a well ('name' is a well name), 'parent'
// will be the name of 'group'. But if we recurse, 'name' and
// 'parent' will stay fixed while 'group' will be higher up
// in the group tree.
const Group::InjectionCMode& currentGroupControl = wellState.currentInjectionGroupControl(injectionPhase, group.name());
if (currentGroupControl == Group::InjectionCMode::FLD ||
currentGroupControl == Group::InjectionCMode::NONE) {
// Return if we are not available for parent group.
if (!group.isAvailableForGroupControl()) {
return std::make_pair(false, 1.0);
}
// Otherwise: check injection share of parent's control.
const auto& parentGroup = schedule.getGroup(group.parent(), reportStepIdx);
return checkGroupConstraintsInj(name,
parent,
parentGroup,
wellState,
reportStepIdx,
guideRate,
rates,
injectionPhase,
pu,
efficiencyFactor * group.getGroupEfficiencyFactor(),
schedule,
summaryState,
rateConverter,
pvtRegionIdx,
deferred_logger);
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
// This can be false for FLD-controlled groups, we must therefore
// check for FLD first (done above).
if (!group.isInjectionGroup()) {
return std::make_pair(false, 1.0);
}
int phasePos;
GuideRateModel::Target target;
switch (injectionPhase) {
case Phase::WATER:
{
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
target = GuideRateModel::Target::WAT;
break;
}
case Phase::OIL:
{
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
target = GuideRateModel::Target::OIL;
break;
}
case Phase::GAS:
{
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
target = GuideRateModel::Target::GAS;
break;
}
default:
OPM_DEFLOG_THROW(std::logic_error, "Expected WATER, OIL or GAS as injecting type for " + name, deferred_logger);
}
assert(group.hasInjectionControl(injectionPhase));
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
const std::vector<double>& groupInjectionReductions = wellState.currentInjectionGroupReductionRates(group.name());
const double groupTargetReduction = groupInjectionReductions[phasePos];
double fraction = wellGroupHelpers::fractionFromInjectionPotentials(name, group.name(), schedule, wellState, reportStepIdx, guideRate, target, pu, injectionPhase, true);
double target_fraction = 1.0;
bool constraint_broken = false;
switch(currentGroupControl) {
case Group::InjectionCMode::RATE:
{
const double current_rate = rates[phasePos];
const double target_rate = fraction * std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction + current_rate*efficiencyFactor)) / efficiencyFactor;
if (current_rate > target_rate) {
constraint_broken = true;
target_fraction = target_rate / current_rate;
}
break;
}
case Group::InjectionCMode::RESV:
{
std::vector<double> convert_coeff(pu.num_phases, 1.0);
rateConverter.calcCoeff(/*fipreg*/ 0, pvtRegionIdx, convert_coeff);
const double coeff = convert_coeff[phasePos];
const double current_rate = rates[phasePos];
const double target_rate = fraction * std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction + current_rate*efficiencyFactor)) / efficiencyFactor;
if (current_rate > target_rate) {
constraint_broken = true;
target_fraction = target_rate / current_rate;
}
break;
}
case Group::InjectionCMode::REIN:
{
double productionRate = wellState.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
const double current_rate = rates[phasePos];
const double target_rate = fraction * std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction + current_rate*efficiencyFactor)) / efficiencyFactor;
if (current_rate > target_rate) {
constraint_broken = true;
target_fraction = target_rate / current_rate;
}
break;
}
case Group::InjectionCMode::VREP:
{
std::vector<double> convert_coeff(pu.num_phases, 1.0);
rateConverter.calcCoeff(/*fipreg*/ 0, pvtRegionIdx, convert_coeff);
const double coeff = convert_coeff[phasePos];
double voidageRate = wellState.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
double injReduction = 0.0;
if (groupcontrols.phase != Phase::WATER)
injReduction += groupInjectionReductions[pu.phase_pos[BlackoilPhases::Aqua]]*convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]];
if (groupcontrols.phase != Phase::OIL)
injReduction += groupInjectionReductions[pu.phase_pos[BlackoilPhases::Liquid]]*convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]];
if (groupcontrols.phase != Phase::GAS)
injReduction += groupInjectionReductions[pu.phase_pos[BlackoilPhases::Vapour]]*convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]];
voidageRate -= injReduction;
const double current_rate = rates[phasePos];
const double target_rate = fraction * std::max(0.0, ( voidageRate/coeff - groupTargetReduction + current_rate*efficiencyFactor)) / efficiencyFactor;
if (current_rate > target_rate) {
constraint_broken = true;
target_fraction = target_rate / current_rate;
}
break;
}
case Group::InjectionCMode::SALE:
{
// only for gas injectors
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
double inj_rate = wellState.currentInjectionREINRates(group.name())[phasePos];
if (schedule.gConSump(reportStepIdx).has(group.name())) {
const auto& gconsump = schedule.gConSump(reportStepIdx).get(group.name(), summaryState);
if (pu.phase_used[BlackoilPhases::Vapour]) {
inj_rate += gconsump.import_rate;
inj_rate -= gconsump.consumption_rate;
}
}
const auto& gconsale = schedule.gConSale(reportStepIdx).get(group.name(), summaryState);
inj_rate -= gconsale.sales_target;
const double current_rate = rates[phasePos];
const double target_rate = fraction * std::max(0.0, (inj_rate - groupTargetReduction + current_rate*efficiencyFactor)) / efficiencyFactor;
if (current_rate > target_rate) {
constraint_broken = true;
target_fraction = target_rate / current_rate;
}
break;
}
case Group::InjectionCMode::NONE:
{
assert(false); // Should already be handled at the top.
}
case Group::InjectionCMode::FLD:
{
assert(false); // Should already be handled at the top.
}
default:
OPM_DEFLOG_THROW(std::runtime_error, "Invalid group control specified for group " + group.name(), deferred_logger );
}
return std::make_pair(constraint_broken, target_fraction);
}
template <class RateConverterType>
class TargetCalculator
{
public:
TargetCalculator(const Group::ProductionCMode cmode,
const PhaseUsage& pu,
const RateConverterType& rate_converter,
const int pvt_region_idx)
: cmode_(cmode)
, pu_(pu)
, rate_converter_(rate_converter)
, pvt_region_idx_(pvt_region_idx)
{
}
template <typename ElemType>
static ElemType zero()
{
// This is for Evaluation types.
ElemType x;
x = 0.0;
return x;
}
2020-03-23 10:14:31 -05:00
//template <>
//static double zero<double>()
//{
// return 0.0;
//}
template <typename RateVec>
auto calcModeRateFromRates(const RateVec& rates) const
{
// ElemType is just the plain element type of the rates container,
// without any reference, const or volatile modifiers.
using ElemType = typename std::remove_cv<typename std::remove_reference<decltype(rates[0])>::type>::type;
switch (cmode_) {
case Group::ProductionCMode::ORAT: {
assert(pu_.phase_used[BlackoilPhases::Liquid]);
const int pos = pu_.phase_pos[BlackoilPhases::Liquid];
return rates[pos];
}
case Group::ProductionCMode::WRAT: {
assert(pu_.phase_used[BlackoilPhases::Aqua]);
const int pos = pu_.phase_pos[BlackoilPhases::Aqua];
return rates[pos];
}
case Group::ProductionCMode::GRAT: {
assert(pu_.phase_used[BlackoilPhases::Vapour]);
const int pos = pu_.phase_pos[BlackoilPhases::Vapour];
return rates[pos];
}
case Group::ProductionCMode::LRAT: {
assert(pu_.phase_used[BlackoilPhases::Liquid]);
assert(pu_.phase_used[BlackoilPhases::Aqua]);
const int opos = pu_.phase_pos[BlackoilPhases::Liquid];
const int wpos = pu_.phase_pos[BlackoilPhases::Aqua];
return rates[opos] + rates[wpos];
}
case Group::ProductionCMode::RESV: {
assert(pu_.phase_used[BlackoilPhases::Liquid]);
assert(pu_.phase_used[BlackoilPhases::Aqua]);
assert(pu_.phase_used[BlackoilPhases::Vapour]);
std::vector<double> convert_coeff(pu_.num_phases, 1.0);
rate_converter_.calcCoeff(/*fipreg*/ 0, pvt_region_idx_, convert_coeff);
ElemType mode_rate = zero<ElemType>();
for (int phase = 0; phase < pu_.num_phases; ++phase) {
mode_rate += rates[phase] * convert_coeff[phase];
}
return mode_rate;
}
default:
// Should never be here.
assert(false);
return zero<ElemType>();
}
}
double groupTarget(const Group::ProductionControls ctrl) const
{
switch (cmode_) {
case Group::ProductionCMode::ORAT:
return ctrl.oil_target;
case Group::ProductionCMode::WRAT:
return ctrl.water_target;
case Group::ProductionCMode::GRAT:
return ctrl.gas_target;
case Group::ProductionCMode::LRAT:
return ctrl.liquid_target;
case Group::ProductionCMode::RESV:
return ctrl.resv_target;
default:
// Should never be here.
assert(false);
return 0.0;
}
}
GuideRateModel::Target guideTargetMode() const
{
switch (cmode_) {
case Group::ProductionCMode::ORAT:
return GuideRateModel::Target::OIL;
case Group::ProductionCMode::WRAT:
return GuideRateModel::Target::WAT;
case Group::ProductionCMode::GRAT:
return GuideRateModel::Target::GAS;
case Group::ProductionCMode::LRAT:
return GuideRateModel::Target::LIQ;
case Group::ProductionCMode::RESV:
return GuideRateModel::Target::RES;
default:
// Should never be here.
assert(false);
return GuideRateModel::Target::NONE;
}
}
private:
Group::ProductionCMode cmode_;
const PhaseUsage& pu_;
const RateConverterType& rate_converter_;
int pvt_region_idx_;
};
inline std::vector<std::string>
groupChainTopBot(const std::string& bottom, const std::string& top, const Schedule& schedule, const int report_step)
{
// Get initial parent, 'bottom' can be a well or a group.
std::string parent;
if (schedule.hasWell(bottom, report_step)) {
parent = schedule.getWell(bottom, report_step).groupName();
} else {
parent = schedule.getGroup(bottom, report_step).parent();
}
// Build the chain from bottom to top.
std::vector<std::string> chain;
chain.push_back(bottom);
chain.push_back(parent);
while (parent != top) {
parent = schedule.getGroup(parent, report_step).parent();
chain.push_back(parent);
}
assert(chain.back() == top);
// Reverse order and return.
std::reverse(chain.begin(), chain.end());
return chain;
}
template <class RateConverterType>
inline std::pair<bool, double> checkGroupConstraintsProd(const std::string& name,
const std::string& parent,
const Group& group,
const WellStateFullyImplicitBlackoil& wellState,
const int reportStepIdx,
const GuideRate* guideRate,
const double* rates,
const PhaseUsage& pu,
const double efficiencyFactor,
const Schedule& schedule,
const SummaryState& summaryState,
const RateConverterType& rateConverter,
const int pvtRegionIdx,
DeferredLogger& deferred_logger)
{
// When called for a well ('name' is a well name), 'parent'
// will be the name of 'group'. But if we recurse, 'name' and
// 'parent' will stay fixed while 'group' will be higher up
// in the group tree.
const Group::ProductionCMode& currentGroupControl = wellState.currentProductionGroupControl(group.name());
if (currentGroupControl == Group::ProductionCMode::FLD ||
currentGroupControl == Group::ProductionCMode::NONE) {
// Return if we are not available for parent group.
if (!group.isAvailableForGroupControl()) {
return std::make_pair(false,1);
}
// Otherwise: check production share of parent's control.
const auto& parentGroup = schedule.getGroup(group.parent(), reportStepIdx);
return checkGroupConstraintsProd(name,
parent,
parentGroup,
wellState,
reportStepIdx,
guideRate,
rates,
pu,
efficiencyFactor * group.getGroupEfficiencyFactor(),
schedule,
summaryState,
rateConverter,
pvtRegionIdx,
deferred_logger);
}
// This can be false for FLD-controlled groups, we must therefore
// check for FLD first (done above).
if (!group.isProductionGroup()) {
return std::make_pair(false,1.0);
}
// If we are here, we are at the topmost group to be visited in the recursion.
// This is the group containing the control we will check against.
TargetCalculator tcalc(currentGroupControl, pu, rateConverter, pvtRegionIdx);
2020-03-23 10:14:31 -05:00
FractionCalculator fcalc(schedule, wellState, reportStepIdx, guideRate, tcalc.guideTargetMode(), pu);
auto localFraction = [&](const std::string& child) {
return fcalc.localFraction(child, name);
};
auto localReduction = [&](const std::string& group_name) {
const std::vector<double>& groupTargetReductions = wellState.currentProductionGroupReductionRates(group_name);
return tcalc.calcModeRateFromRates(groupTargetReductions);
};
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
// Assume we have a chain of groups as follows: BOTTOM -> MIDDLE -> TOP.
// Then ...
// TODO finish explanation.
const double current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
const auto chain = groupChainTopBot(name, group.name(), schedule, reportStepIdx);
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
const size_t num_ancestors = chain.size() - 1;
double target = orig_target;
for (size_t ii = 0; ii < num_ancestors; ++ii) {
target -= localReduction(chain[ii]);
if (ii == num_ancestors - 1) {
// Final level. Add my reduction back.
target += current_rate*efficiencyFactor;
} else {
// Not final level. Add sub-level reduction back, if
// it was nonzero due to having no group-controlled
// wells. Note that we make this call without setting
// the current well to be always included, because we
// want to know the situation that applied to the
// calculation of reductions.
const int num_gr_ctrl = groupControlledWells(schedule, wellState, reportStepIdx, chain[ii+1], "");
if (num_gr_ctrl == 0) {
target += localReduction(chain[ii+1]);
}
}
target *= localFraction(chain[ii+1]);
}
const double target_rate = std::max(0.0, target / efficiencyFactor);
return std::make_pair(current_rate > target_rate, target_rate / current_rate);
}
} // namespace wellGroupHelpers
}
#endif