opm-simulators/opm/models/discretization/common/fvbasegradientcalculator.hh

357 lines
14 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseGradientCalculator
*/
#ifndef EWOMS_FV_BASE_GRADIENT_CALCULATOR_HH
#define EWOMS_FV_BASE_GRADIENT_CALCULATOR_HH
#include "fvbaseproperties.hh"
#include <dune/common/fvector.hh>
namespace Opm {
template<class TypeTag>
class EcfvDiscretization;
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief This class calculates gradients of arbitrary quantities at
* flux integration points using the two-point approximation scheme
*/
template<class TypeTag>
class FvBaseGradientCalculator
{
2020-06-10 06:49:42 -05:00
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using Discretization = GetPropType<TypeTag, Properties::Discretization>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
enum { dim = GridView::dimension };
enum { dimWorld = GridView::dimensionworld };
// maximum number of flux approximation points. to calculate this,
// we assume that the geometry with the most pointsq is a cube.
enum { maxFap = 2 << dim };
2020-06-10 06:49:42 -05:00
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
using EvalDimVector = Dune::FieldVector<Evaluation, dimWorld>;
public:
/*!
* \brief Register all run-time parameters for the gradient calculator
* of the base class of the discretization.
*/
static void registerParameters()
{ }
/*!
* \brief Precomputes the common values to calculate gradients and values of
* quantities at every interior flux approximation point.
*
* \param elemCtx The current execution context
* \param timeIdx The index used by the time discretization.
*/
template <bool prepareValues = true, bool prepareGradients = true>
void prepare(const ElementContext&, unsigned)
{ /* noting to do */ }
/*!
* \brief Calculates the value of an arbitrary scalar quantity at any interior flux
* approximation point.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point in the current
* element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity at an index of a degree of
* freedom
*/
template <class QuantityCallback>
auto calculateScalarValue(const ElementContext& elemCtx,
unsigned fapIdx,
const QuantityCallback& quantityCallback) const
-> typename std::remove_reference<decltype(quantityCallback.operator()(0))>::type
{
2020-06-10 06:49:42 -05:00
using RawReturnType = decltype(quantityCallback.operator()(0));
using ReturnType = typename std::remove_const<typename std::remove_reference<RawReturnType>::type>::type;
Scalar interiorDistance;
Scalar exteriorDistance;
computeDistances_(interiorDistance, exteriorDistance, elemCtx, fapIdx);
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(fapIdx);
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
auto focusDofIdx = elemCtx.focusDofIndex();
// use the average weighted by distance...
ReturnType value;
if (i == focusDofIdx)
value = quantityCallback(i)*interiorDistance;
else
value = getValue(quantityCallback(i))*interiorDistance;
if (j == focusDofIdx)
value += quantityCallback(j)*exteriorDistance;
else
value += getValue(quantityCallback(j))*exteriorDistance;
value /= interiorDistance + exteriorDistance;
return value;
}
/*!
* \brief Calculates the value of an arbitrary vectorial quantity at any interior flux
* approximation point.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point in the current
* element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity at an index of a degree of
* freedom
*/
template <class QuantityCallback>
auto calculateVectorValue(const ElementContext& elemCtx,
unsigned fapIdx,
const QuantityCallback& quantityCallback) const
-> typename std::remove_reference<decltype(quantityCallback.operator()(0))>::type
{
2020-06-10 06:49:42 -05:00
using RawReturnType = decltype(quantityCallback.operator()(0));
using ReturnType = typename std::remove_const<typename std::remove_reference<RawReturnType>::type>::type;
Scalar interiorDistance;
Scalar exteriorDistance;
computeDistances_(interiorDistance, exteriorDistance, elemCtx, fapIdx);
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(fapIdx);
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
auto focusDofIdx = elemCtx.focusDofIndex();
// use the average weighted by distance...
ReturnType value;
if (i == focusDofIdx) {
value = quantityCallback(i);
for (int k = 0; k < value.size(); ++k)
value[k] *= interiorDistance;
}
else {
const auto& dofVal = getValue(quantityCallback(i));
for (int k = 0; k < dofVal.size(); ++k)
value[k] = getValue(dofVal[k])*interiorDistance;
}
if (j == focusDofIdx) {
const auto& dofVal = quantityCallback(j);
for (int k = 0; k < dofVal.size(); ++k)
value[k] += dofVal[k]*exteriorDistance;
}
else {
const auto& dofVal = quantityCallback(j);
for (int k = 0; k < dofVal.size(); ++k)
value[k] += getValue(dofVal[k])*exteriorDistance;
}
Scalar totDistance = interiorDistance + exteriorDistance;
for (int k = 0; k < value.size(); ++k)
value[k] /= totDistance;
return value;
}
/*!
* \brief Calculates the gradient of an arbitrary quantity at any
* flux approximation point.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point
* in the current element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity given the index of a degree of
* freedom
*/
template <class QuantityCallback>
void calculateGradient(EvalDimVector& quantityGrad,
const ElementContext& elemCtx,
unsigned fapIdx,
const QuantityCallback& quantityCallback) const
{
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
const auto& face = stencil.interiorFace(fapIdx);
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
auto focusIdx = elemCtx.focusDofIndex();
const auto& interiorPos = stencil.subControlVolume(i).globalPos();
const auto& exteriorPos = stencil.subControlVolume(j).globalPos();
Evaluation deltay;
if (i == focusIdx) {
deltay =
getValue(quantityCallback(j))
- quantityCallback(i);
}
else if (j == focusIdx) {
deltay =
quantityCallback(j)
- getValue(quantityCallback(i));
}
else
deltay =
getValue(quantityCallback(j))
- getValue(quantityCallback(i));
Scalar distSquared = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = exteriorPos[dimIdx] - interiorPos[dimIdx];
distSquared += tmp*tmp;
}
// divide the gradient by the squared distance between the centers of the
// sub-control volumes: the gradient is the normalized directional vector between
// the two centers times the ratio of the difference of the values and their
// distance, i.e., d/abs(d) * delta y / abs(d) = d*delta y / abs(d)^2.
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = exteriorPos[dimIdx] - interiorPos[dimIdx];
quantityGrad[dimIdx] = deltay*(tmp/distSquared);
}
}
/*!
* \brief Calculates the value of an arbitrary quantity at any
* flux approximation point on the grid boundary.
*
* Boundary values are always calculated using the two-point
* approximation.
*
* \param elemCtx The current execution context
* \param fapIdx The local index of the flux approximation point
* in the current element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity given the index of a degree of
* freedom
*/
template <class QuantityCallback>
auto calculateBoundaryValue(const ElementContext&,
unsigned,
const QuantityCallback& quantityCallback)
-> decltype(quantityCallback.boundaryValue())
{ return quantityCallback.boundaryValue(); }
/*!
* \brief Calculates the gradient of an arbitrary quantity at any
* flux approximation point on the boundary.
*
* Boundary gradients are always calculated using the two-point
* approximation.
*
* \param elemCtx The current execution context
* \param faceIdx The local index of the flux approximation point
* in the current element's stencil.
* \param quantityCallback A callable object returning the value
* of the quantity at an index of a degree of
* freedom
*/
template <class QuantityCallback>
void calculateBoundaryGradient(EvalDimVector& quantityGrad,
const ElementContext& elemCtx,
unsigned faceIdx,
const QuantityCallback& quantityCallback) const
{
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
const auto& face = stencil.boundaryFace(faceIdx);
Evaluation deltay;
if (face.interiorIndex() == elemCtx.focusDofIndex())
deltay = quantityCallback.boundaryValue() - quantityCallback(face.interiorIndex());
else
deltay =
getValue(quantityCallback.boundaryValue())
- getValue(quantityCallback(face.interiorIndex()));
const auto& boundaryFacePos = face.integrationPos();
const auto& interiorPos = stencil.subControlVolume(face.interiorIndex()).center();
Scalar distSquared = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = boundaryFacePos[dimIdx] - interiorPos[dimIdx];
distSquared += tmp*tmp;
}
// divide the gradient by the squared distance between the center of the
// sub-control and the center of the boundary face: the gradient is the
// normalized directional vector between the two centers times the ratio of the
// difference of the values and their distance, i.e., d/abs(d) * deltay / abs(d)
// = d*deltay / abs(d)^2.
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
Scalar tmp = boundaryFacePos[dimIdx] - interiorPos[dimIdx];
quantityGrad[dimIdx] = deltay*(tmp/distSquared);
}
}
private:
void computeDistances_(Scalar& interiorDistance,
Scalar& exteriorDistance,
const ElementContext& elemCtx,
unsigned fapIdx) const
{
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
const auto& face = stencil.interiorFace(fapIdx);
// calculate the distances of the position of the interior and of the exterior
// finite volume to the position of the integration point.
const auto& normal = face.normal();
auto i = face.interiorIndex();
auto j = face.exteriorIndex();
const auto& interiorPos = stencil.subControlVolume(i).globalPos();
const auto& exteriorPos = stencil.subControlVolume(j).globalPos();
const auto& integrationPos = face.integrationPos();
interiorDistance = 0.0;
exteriorDistance = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx) {
interiorDistance +=
(interiorPos[dimIdx] - integrationPos[dimIdx])
* normal[dimIdx];
exteriorDistance +=
(exteriorPos[dimIdx] - integrationPos[dimIdx])
* normal[dimIdx];
}
interiorDistance = std::sqrt(std::abs(interiorDistance));
exteriorDistance = std::sqrt(std::abs(exteriorDistance));
}
};
} // namespace Opm
#endif