opm-simulators/opm/simulators/utils/PropsCentroidsDataHandle.hpp

254 lines
9.6 KiB
C++
Raw Normal View History

/*
Copyright 2020 Equinor AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file FieldPropsDatahandle.hpp
* \brief File containing a data handle for communicating the FieldProperties
*
* \author Markus Blatt, OPM-OP AS
*/
#ifndef PROPS_CENTROIDS_DATAHANDLE_HPP
#define PROPS_CENTROIDS_DATAHANDLE_HPP
#if HAVE_MPI
#include <opm/simulators/utils/ParallelEclipseState.hpp>
#include <opm/simulators/utils/ParallelRestart.hpp>
#include <dune/grid/common/datahandleif.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/grid/common/partitionset.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <unordered_map>
#include <iostream>
namespace Opm
{
/*!
* \brief A Data handle to communicate the field properties and cell centroids during load balance.
* \tparam Grid The type of grid where the load balancing is happening.
* \todo Maybe specialize this for CpGrid to save some space, later.
*/
template<class Grid>
class PropsCentroidsDataHandle
: public Dune::CommDataHandleIF< PropsCentroidsDataHandle<Grid>, double>
{
public:
//! \brief the data type we send (ints are converted to double)
using DataType = std::pair<double, unsigned char>;
//! \brief Constructor
//! \param grid The grid where the loadbalancing is happening.
//! \param globalProps The field properties of the global grid
//! \param distributedProps The distributed field properties
//! \param eclGridOnRoot A pointer to eclipse grid on rank zero,
//! nullptr otherwise.
//! \param centroids Array to store the centroids in upon destruction
//! of the object.
//! \param cartMapper The cartesian index mapper of the grid.
PropsCentroidsDataHandle(const Grid& grid, ParallelEclipseState& eclState,
const EclipseGrid* eclGridOnRoot,
std::vector<double>& centroids,
const typename Dune::CartesianIndexMapper<Grid>& cartMapper)
: m_grid(grid),
m_distributed_fieldProps(eclState.m_fieldProps),
m_centroids(centroids)
{
// Scatter the keys
const Parallel::Communication comm = m_grid.comm();
if (comm.rank() == 0)
{
const FieldPropsManager& globalProps = eclState.globalFieldProps();
m_intKeys = globalProps.keys<int>();
m_doubleKeys = globalProps.keys<double>();
m_distributed_fieldProps.copyTran(globalProps);
}
EclMpiSerializer ser(comm);
ser.broadcast(*this);
m_no_data = m_intKeys.size() + m_doubleKeys.size() + Grid::dimensionworld;
if (comm.rank() == 0) {
const FieldPropsManager& globalProps = eclState.globalFieldProps();
const auto& idSet = m_grid.localIdSet();
const auto& gridView = m_grid.levelGridView(0);
using ElementMapper =
Dune::MultipleCodimMultipleGeomTypeMapper<typename Grid::LevelGridView>;
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
for (const auto &element : elements(gridView, Dune::Partitions::interiorBorder))
{
const auto& id = idSet.id(element);
auto index = elemMapper.index(element);
auto& data = elementData_[id];
data.reserve(m_no_data);
for (const auto& intKey : m_intKeys)
{
const auto& fieldData = globalProps.get_int_field_data(intKey);
data.emplace_back(fieldData.data[index],
static_cast<unsigned char>(fieldData.value_status[index]));
}
for (const auto& doubleKey : m_doubleKeys)
{
// We need to allow unsupported keywords to get the data
// for TranCalculator, too.
const auto& fieldData = globalProps.get_double_field_data(doubleKey,
/* allow_unsupported = */ true);
data.emplace_back(fieldData.data[index],
static_cast<unsigned char>(fieldData.value_status[index]));
}
auto cartIndex = cartMapper.cartesianIndex(index);
const auto& center = eclGridOnRoot->getCellCenter(cartIndex);
for (int dim = 0; dim < Grid::dimensionworld; ++dim)
data.emplace_back(center[dim], '1'); // write garbage for value_status
}
}
}
~PropsCentroidsDataHandle()
{
// distributed grid is now correctly set up.
for (const auto& intKey : m_intKeys)
{
m_distributed_fieldProps.m_intProps[intKey].data.resize(m_grid.size(0));
m_distributed_fieldProps.m_intProps[intKey].value_status.resize(m_grid.size(0));
}
for (const auto& doubleKey : m_doubleKeys)
{
m_distributed_fieldProps.m_doubleProps[doubleKey].data.resize(m_grid.size(0));
m_distributed_fieldProps.m_doubleProps[doubleKey].value_status.resize(m_grid.size(0));
}
m_centroids.resize(m_grid.size(0) * Grid::dimensionworld);
// copy data for the persistent mao to the field properties
const auto& idSet = m_grid.localIdSet();
const auto& gridView = m_grid.levelGridView(0);
using ElementMapper =
Dune::MultipleCodimMultipleGeomTypeMapper<typename Grid::LevelGridView>;
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
for (const auto &element : elements( gridView, Dune::Partitions::all))
{
std::size_t counter{};
const auto& id = idSet.id(element);
auto index = elemMapper.index(element);
auto data = elementData_.find(id);
assert(data != elementData_.end());
for (const auto& intKey : m_intKeys)
{
const auto& pair = data->second[counter++];
m_distributed_fieldProps.m_intProps[intKey].data[index] = static_cast<int>(pair.first);
m_distributed_fieldProps.m_intProps[intKey].value_status[index] = static_cast<value::status>(pair.second);
}
for (const auto& doubleKey : m_doubleKeys)
{
const auto& pair = data->second[counter++];
m_distributed_fieldProps.m_doubleProps[doubleKey].data[index] = pair.first;
m_distributed_fieldProps.m_doubleProps[doubleKey].value_status[index] = static_cast<value::status>(pair.second);
}
auto centroidIter = m_centroids.begin() + Grid::dimensionworld * index;
auto centroidIterEnd = centroidIter + Grid::dimensionworld;
for ( ; centroidIter != centroidIterEnd; ++centroidIter )
*centroidIter = data->second[counter++].first; // value_status discarded
}
}
bool contains(int /* dim */, int codim)
{
return codim == 0;
}
bool fixedsize(int /* dim */, int /* codim */)
{
return true;
}
bool fixedSize(int /* dim */, int /* codim */)
{
return true;
}
template<class EntityType>
std::size_t size(const EntityType /* entity */)
{
return m_no_data;
}
template<class BufferType, class EntityType>
void gather(BufferType& buffer, const EntityType& e) const
{
auto iter = elementData_.find(m_grid.localIdSet().id(e));
assert(iter != elementData_.end());
for (const auto& data : iter->second)
{
buffer.write(data);
}
}
template<class BufferType, class EntityType>
void scatter(BufferType& buffer, const EntityType& e, std::size_t n)
{
assert(n == m_no_data);
auto& array = elementData_[m_grid.localIdSet().id(e)];
array.resize(n);
for (auto& data : array)
{
buffer.read(data);
}
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(m_intKeys);
serializer(m_doubleKeys);
m_distributed_fieldProps.serializeOp(serializer);
}
private:
using LocalIdSet = typename Grid::LocalIdSet;
const Grid& m_grid;
//! \brief The distributed field properties for receiving
ParallelFieldPropsManager& m_distributed_fieldProps;
//! \brief The names of the keys of the integer fields.
std::vector<std::string> m_intKeys;
//! \brief The names of the keys of the double fields.
std::vector<std::string> m_doubleKeys;
/// \brief The data per element as a vector mapped from the local id.
///
/// each entry is a pair of data and value_status.
std::unordered_map<typename LocalIdSet::IdType, std::vector<std::pair<double,unsigned char> > > elementData_;
/// \brief The cell centroids of the distributed grid.
std::vector<double>& m_centroids;
/// \brief The amount of data to send for each element
std::size_t m_no_data;
};
} // end namespace Opm
#endif // HAVE_MPI
#endif // PROPS_CENTROIDS_DATAHANDLE_HPP