opm-simulators/opm/simulators/wells/MultisegmentWellAssemble.cpp

206 lines
9.1 KiB
C++
Raw Normal View History

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/wells/MultisegmentWellEquations.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
namespace Opm {
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
const EvalWell& wqTotal,
const EvalWell& bhp,
const std::function<EvalWell(const int)>& getQs,
Equations& eqns,
DeferredLogger& deferred_logger) const
{
static constexpr int Gas = BlackoilPhases::Vapour;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Water = BlackoilPhases::Aqua;
EvalWell control_eq(0.0);
const auto& well = well_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (well_.wellIsStopped()) {
control_eq = wqTotal;
} else if (well_.isInjector() ) {
// Find scaling factor to get injection rate,
const InjectorType injectorType = inj_controls.injector_type;
double scaling = 1.0;
const auto& pu = well_.phaseUsage();
switch (injectorType) {
case InjectorType::WATER:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
break;
}
case InjectorType::OIL:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
break;
}
case InjectorType::GAS:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const EvalWell injection_rate = wqTotal / scaling;
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(well_).assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
bhp,
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(well_).assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
bhp,
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
eqns.resWell_[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePressureLoss(const int seg,
const int seg_upwind,
const EvalWell& accelerationPressureLoss,
Equations& eqns) const
{
eqns.resWell_[seg][SPres] -= accelerationPressureLoss.value();
eqns.duneD_[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
eqns.duneD_[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
if constexpr (has_wfrac_variable) {
eqns.duneD_[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
}
if constexpr (has_gfrac_variable) {
eqns.duneD_[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
}
}
#define INSTANCE(...) \
template class MultisegmentWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
}