opm-simulators/ebos/eclmpiserializer.hh

490 lines
16 KiB
C++
Raw Normal View History

/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#ifndef ECL_MPI_SERIALIZER_HH
#define ECL_MPI_SERIALIZER_HH
#include <opm/simulators/utils/ParallelRestart.hpp>
#include <optional>
#include <variant>
namespace Opm {
2020-03-19 03:09:58 -05:00
/*! \brief Class for (de-)serializing and broadcasting data in parallel.
*! \details Can be called on any class with a serializeOp member. Such classes
*! are referred to as 'complex types' in the documentation.
*/
class EclMpiSerializer {
public:
2020-03-19 03:09:58 -05:00
//! \brief Constructor.
//! \param comm The global communicator to broadcast using
2020-01-22 04:33:07 -06:00
explicit EclMpiSerializer(Dune::CollectiveCommunication<Dune::MPIHelper::MPICommunicator> comm) :
m_comm(comm)
{}
2020-03-19 03:09:58 -05:00
//! \brief (De-)serialization for simple types.
//! \details The data handled by this depends on the underlying serialization used.
//! Currently you can call this for scalars, and stl containers with scalars.
template<class T>
void operator()(const T& data)
{
if constexpr (is_ptr<T>::value) {
ptr(data);
} else if constexpr (is_pair<T>::value) {
pair(data);
} else if constexpr (is_variant<T>::value) {
variant(data);
} else if constexpr (is_optional<T>::value) {
optional(data);
} else {
if (m_op == Operation::PACKSIZE)
m_packSize += Mpi::packSize(data, m_comm);
else if (m_op == Operation::PACK)
Mpi::pack(data, m_buffer, m_position, m_comm);
else if (m_op == Operation::UNPACK)
Mpi::unpack(const_cast<T&>(data), m_buffer, m_position, m_comm);
}
}
2020-03-19 03:09:58 -05:00
//! \brief Handler for vectors.
//! \tparam T Type for vector elements
//! \tparam complexType Whether or not T is a complex type
//! \param data The vector to (de-)serialize
template<class T, bool complexType = true>
void vector(std::vector<T>& data)
{
auto handle = [&](auto& d)
{
for (auto& it : d) {
if constexpr (is_pair<T>::value)
pair(it);
else if constexpr (is_ptr<T>::value)
ptr(it);
else if constexpr (!complexType)
(*this)(it);
else
it.serializeOp(*this);
}
};
if (m_op == Operation::PACKSIZE) {
m_packSize += Mpi::packSize(data.size(), m_comm);
handle(data);
} else if (m_op == Operation::PACK) {
Mpi::pack(data.size(), m_buffer, m_position, m_comm);
handle(data);
} else if (m_op == Operation::UNPACK) {
size_t size;
Mpi::unpack(size, m_buffer, m_position, m_comm);
data.resize(size);
handle(data);
}
}
//! \brief Handler for std::variant<> with four types
/*
The std::variant<> serialization is a first attempt and *not* particularly
general. In particular that implies:
1. It is hardcoded to hold exactly four alternative types T0, T1, T2 and
T3.
2. All the four types T0, T1, T2 and T3 must implement the ::serializeOp( )
method. This implies that a variant with a fundamental type like e.g.
std::variant<int, double, Opm::Well, Opm::Group> will *not* work in the
current implementation.
*/
template<class T0, class T1, class T2, class T3>
void variant(const std::variant<T0,T1,T2,T3>& _data)
{
auto handle = [&](auto& d) {
d.serializeOp(*this);
};
std::variant<T0,T1,T2,T3>& data = const_cast<std::variant<T0,T1,T2,T3>&>(_data);
if (m_op == Operation::PACKSIZE) {
m_packSize += Mpi::packSize(data.index(), m_comm);
std::visit( [&] (auto& arg) { handle(arg); }, data);
} else if (m_op == Operation::PACK) {
Mpi::pack(data.index(), m_buffer, m_position, m_comm);
std::visit([&](auto& arg) { handle(arg); }, data);
} else if (m_op == Operation::UNPACK) {
size_t index;
Mpi::unpack(index, m_buffer, m_position, m_comm);
if (index == 0) {
data = T0();
handle(std::get<0>(data));
} else if (index == 1) {
data = T1();
handle(std::get<1>(data));
} else if (index == 2) {
data = T2();
handle(std::get<2>(data));
} else if (index == 3) {
data = T3();
handle(std::get<3>(data));
} else
std::logic_error("Internal meltdown in std::variant<T0,T1,T2,T3> unpack");
}
}
//! \brief Handler for std::variant<> with two fundamental types
/*
This std::variant serialization is highly specialized:
1. It is hardcoded to take exactly two types T0 and T1.
2. Both T0 and T1 must be basic types where Mpi::pack(T, ...) overloads
must exist.
*/
template<class T0, class T1>
void variant(const std::variant<T0,T1>& data)
{
auto pack_size = [&](auto& d) {
m_packSize += Mpi::packSize(d, m_comm);
};
auto pack = [&](auto& d) {
Mpi::pack(d, m_buffer, m_position, m_comm);
};
if (m_op == Operation::PACKSIZE) {
m_packSize += Mpi::packSize(data.index(), m_comm);
std::visit( [&] (auto& arg) { pack_size(arg); }, data);
} else if (m_op == Operation::PACK) {
Mpi::pack(data.index(), m_buffer, m_position, m_comm);
std::visit([&](auto& arg) { pack(arg); }, data);
} else if (m_op == Operation::UNPACK) {
size_t index;
std::variant<T0,T1>& mutable_data = const_cast<std::variant<T0,T1>&>(data);
Mpi::unpack(index, m_buffer, m_position, m_comm);
if (index == 0) {
T0 t0;
Mpi::unpack(t0, m_buffer, m_position, m_comm);
mutable_data = t0;
} else if (index == 1) {
T1 t1;
Mpi::unpack(t1, m_buffer, m_position, m_comm);
mutable_data = t1;
} else
throw std::logic_error("Internal meltdown in std::variant<T0,T1> unpack loaded index=" + std::to_string(index) + " allowed range: [0,1]");
}
}
//! \brief Handler for std::optional.
//! \tparam T Type for data
//! \param data The optional to (de-)serialize
template<class T>
void optional(const std::optional<T>& data)
{
if (m_op == Operation::PACKSIZE) {
m_packSize += Mpi::packSize(data.has_value(), m_comm);
if (data.has_value()) {
if constexpr (has_serializeOp<T>::value) {
const_cast<T&>(*data).serializeOp(*this);
} else
m_packSize += Mpi::packSize(*data, m_comm);
}
} else if (m_op == Operation::PACK) {
Mpi::pack(data.has_value(), m_buffer, m_position, m_comm);
if (data.has_value()) {
if constexpr (has_serializeOp<T>::value) {
const_cast<T&>(*data).serializeOp(*this);
} else {
Mpi::pack(*data, m_buffer, m_position, m_comm);
}
}
} else if (m_op == Operation::UNPACK) {
bool has;
Mpi::unpack(has, m_buffer, m_position, m_comm);
if (has) {
T res;
if constexpr (has_serializeOp<T>::value) {
res.serializeOp(*this);
} else {
Mpi::unpack(res, m_buffer, m_position, m_comm);
}
const_cast<std::optional<T>&>(data) = res;
}
}
}
2020-03-19 03:09:58 -05:00
//! \brief Handler for maps.
//! \tparam Map map type
//! \tparam complexType Whether or not Data in map is a complex type
//! \param map The map to (de-)serialize
template<class Map, bool complexType = true>
void map(Map& data)
2020-03-16 08:39:10 -05:00
{
using Key = typename Map::key_type;
using Data = typename Map::mapped_type;
2020-03-16 08:39:10 -05:00
auto handle = [&](auto& d)
{
if constexpr (is_vector<Data>::value)
this->template vector<typename Data::value_type,complexType>(d);
else if constexpr (is_ptr<Data>::value)
ptr(d);
else if constexpr (complexType)
2020-03-16 08:39:10 -05:00
d.serializeOp(*this);
else
(*this)(d);
2020-03-16 08:39:10 -05:00
};
auto keyHandle = [&](auto& d)
{
if constexpr (is_pair<Key>::value)
pair(d);
else
(*this)(d);
};
2020-03-16 08:39:10 -05:00
if (m_op == Operation::PACKSIZE) {
m_packSize += Mpi::packSize(data.size(), m_comm);
for (auto& it : data) {
keyHandle(it.first);
2020-03-16 08:39:10 -05:00
handle(it.second);
}
} else if (m_op == Operation::PACK) {
Mpi::pack(data.size(), m_buffer, m_position, m_comm);
for (auto& it : data) {
keyHandle(it.first);
2020-03-16 08:39:10 -05:00
handle(it.second);
}
} else if (m_op == Operation::UNPACK) {
size_t size;
Mpi::unpack(size, m_buffer, m_position, m_comm);
for (size_t i = 0; i < size; ++i) {
Key key;
keyHandle(key);
2020-03-16 08:39:10 -05:00
Data entry;
handle(entry);
data.insert(std::make_pair(key, entry));
}
}
}
2020-03-19 03:09:58 -05:00
//! \brief Call this to serialize data.
//! \tparam T Type of class to serialize
//! \param data Class to serialize
template<class T>
void pack(T& data)
{
m_op = Operation::PACKSIZE;
m_packSize = 0;
data.serializeOp(*this);
m_position = 0;
m_buffer.resize(m_packSize);
m_op = Operation::PACK;
data.serializeOp(*this);
}
2020-03-19 03:09:58 -05:00
//! \brief Call this to de-serialize data.
//! \tparam T Type of class to de-serialize
//! \param data Class to de-serialize
template<class T>
void unpack(T& data)
{
m_position = 0;
m_op = Operation::UNPACK;
data.serializeOp(*this);
}
2020-03-19 03:09:58 -05:00
//! \brief Serialize and broadcast on root process, de-serialize on others.
//! \tparam T Type of class to broadcast
//! \param data Class to broadcast
template<class T>
void broadcast(T& data)
{
if (m_comm.size() == 1)
return;
if (m_comm.rank() == 0) {
try {
pack(data);
m_packSize = m_position;
m_comm.broadcast(&m_packSize, 1, 0);
m_comm.broadcast(m_buffer.data(), m_position, 0);
} catch (...) {
m_packSize = std::numeric_limits<size_t>::max();
m_comm.broadcast(&m_packSize, 1, 0);
throw;
}
} else {
m_comm.broadcast(&m_packSize, 1, 0);
if (m_packSize == std::numeric_limits<size_t>::max()) {
throw std::runtime_error("Error detected in parallel serialization");
}
m_buffer.resize(m_packSize);
m_comm.broadcast(m_buffer.data(), m_packSize, 0);
unpack(data);
}
}
2020-03-19 03:09:58 -05:00
//! \brief Returns current position in buffer.
size_t position() const
{
return m_position;
}
2020-03-19 03:09:58 -05:00
//! \brief Returns true if we are currently doing a serialization operation.
bool isSerializing() const
{
return m_op != Operation::UNPACK;
}
protected:
2020-03-19 03:09:58 -05:00
//! \brief Enumeration of operations.
enum class Operation {
PACKSIZE, //!< Calculating serialization buffer size
PACK, //!< Performing serialization
UNPACK //!< Performing de-serialization
};
//! \brief Predicate for detecting pairs.
template<class T>
struct is_pair {
constexpr static bool value = false;
};
template<class T1, class T2>
struct is_pair<std::pair<T1,T2>> {
constexpr static bool value = true;
};
2020-03-19 03:09:58 -05:00
//! \brief Predicate for detecting vectors.
2020-03-16 08:39:10 -05:00
template<class T>
struct is_vector {
constexpr static bool value = false;
};
template<class T1>
struct is_vector<std::vector<T1>> {
constexpr static bool value = true;
};
//! \brief Predicate for detecting variants.
template<class T>
struct is_variant {
constexpr static bool value = false;
};
template<class... Ts>
struct is_variant<std::variant<Ts...>> {
constexpr static bool value = true;
};
2020-03-19 03:09:58 -05:00
//! \brief Predicate for smart pointers.
template<class T>
struct is_ptr {
constexpr static bool value = false;
};
template<class T1>
struct is_ptr<std::shared_ptr<T1>> {
constexpr static bool value = true;
};
template<class T1, class Deleter>
struct is_ptr<std::unique_ptr<T1, Deleter>> {
constexpr static bool value = true;
};
//! \brief Predicate for std::optional.
template<class T>
struct is_optional {
constexpr static bool value = false;
};
template<class T1>
struct is_optional<std::optional<T1>> {
constexpr static bool value = true;
};
2020-03-19 03:09:58 -05:00
//! \brief Handler for pairs.
//! \details If data is POD or a string, we pass it to the underlying serializer,
//! if not we assume a complex type.
template<class T1, class T2>
void pair(const std::pair<T1,T2>& data)
{
if constexpr (std::is_pod<T1>::value || std::is_same<T1,std::string>::value)
(*this)(data.first);
else
data.first.serializeOp(*this);
if constexpr (std::is_pod<T2>::value || std::is_same<T2,std::string>::value)
(*this)(data.second);
else
const_cast<T2&>(data.second).serializeOp(*this);
}
2020-03-19 03:09:58 -05:00
//! \brief Handler for smart pointers.
//! \details If data is POD or a string, we pass it to the underlying serializer,
//! if not we assume a complex type.
template<class PtrType>
void ptr(const PtrType& data)
{
using T1 = typename PtrType::element_type;
bool value = data ? true : false;
(*this)(value);
if (m_op == Operation::UNPACK && value) {
const_cast<PtrType&>(data).reset(new T1);
}
if (data)
data->serializeOp(*this);
}
//! \brief Checks if a type has a serializeOp member.
//! \detail Ideally we would check for the serializeOp member,
//! but this is a member template. For simplicity,
//! we use serializeObject as our check for now.
template <typename T>
class has_serializeOp
{
using yes_type = char;
using no_type = long;
template <typename U> static yes_type test(decltype(&U::serializeObject));
template <typename U> static no_type test(...);
public:
static constexpr bool value = sizeof(test<T>(0)) == sizeof(yes_type);
};
2020-03-19 03:09:58 -05:00
Dune::CollectiveCommunication<Dune::MPIHelper::MPICommunicator> m_comm; //!< Communicator to broadcast using
2020-03-19 03:09:58 -05:00
Operation m_op = Operation::PACKSIZE; //!< Current operation
size_t m_packSize = 0; //!< Required buffer size after PACKSIZE has been done
int m_position = 0; //!< Current position in buffer
std::vector<char> m_buffer; //!< Buffer for serialized data
};
}
#endif