2017-08-17 08:49:54 -05:00
/*
Copyright 2017 SINTEF Digital , Mathematics and Cybernetics .
Copyright 2017 Statoil ASA .
This file is part of the Open Porous Media project ( OPM ) .
OPM is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
OPM is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with OPM . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
# define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
# include <opm/autodiff/WellInterface.hpp>
namespace Opm
{
template < typename TypeTag >
class MultisegmentWell : public WellInterface < TypeTag >
{
public :
typedef WellInterface < TypeTag > Base ;
// TODO: the WellState does not have any information related to segments
using typename Base : : WellState ;
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
// TODO: should I begin with the old primary variable or the new fraction based variable systems?
// Let us begin with the new one
enum WellVariablePositions {
GTotal = 0 ,
WFrac = 1 ,
GFrac = 2 ,
SPres = 3
} ;
/// the number of well equations // TODO: it should have a more general strategy for it
static const int numWellEq = 4 ;
using typename Base : : Scalar ;
using typename Base : : ConvergenceReport ;
/// the number of reservior equations
using Base : : numEq ;
/// the matrix and vector types for the reservoir
using typename Base : : Mat ;
using typename Base : : BVector ;
using typename Base : : Eval ;
// sparsity pattern for the matrices
// [A C^T [x = [ res
// B D ] x_well] res_well]
// the vector type for the res_well and x_well
typedef Dune : : FieldVector < Scalar , numWellEq > VectorBlockWellType ;
typedef Dune : : BlockVector < VectorBlockWellType > BVectorWell ;
// the matrix type for the diagonal matrix D
typedef Dune : : FieldMatrix < Scalar , numWellEq , numWellEq > DiagMatrixBlockWellType ;
typedef Dune : : BCRSMatrix < DiagMatrixBlockWellType > DiagMatWell ;
// the matrix type for the non-diagonal matrix B and C^T
typedef Dune : : FieldMatrix < Scalar , numWellEq , numEq > OffDiagMatrixBlockWellType ;
typedef Dune : : BCRSMatrix < OffDiagMatrixBlockWellType > OffDiagMatWell ;
// TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell
// EvalR (Eval), EvalW, EvalRW
// TODO: for now, we only use one type to save some implementation efforts, while improve later.
typedef DenseAd : : Evaluation < double , /*size=*/ numEq + numWellEq > EvalWell ;
MultisegmentWell ( const Well * well , const int time_step , const Wells * wells ) ;
virtual void init ( const PhaseUsage * phase_usage_arg ,
const std : : vector < bool > * active_arg ,
const std : : vector < double > & depth_arg ,
const double gravity_arg ,
const int num_cells ) ;
virtual void initPrimaryVariablesEvaluation ( ) const ;
virtual void assembleWellEq ( Simulator & ebosSimulator ,
const double dt ,
WellState & well_state ,
bool only_wells ) ;
/// updating the well state based the control mode specified with current
// TODO: later will check wheter we need current
virtual void updateWellStateWithTarget ( const int current ,
WellState & xw ) const ;
// TODO: this should go to the WellInterface, while updateWellStateWithTarget
// will need touch different types of well_state, we will see.
virtual void updateWellControl ( WellState & xw ,
wellhelpers : : WellSwitchingLogger & logger ) const ;
/// check whether the well equations get converged for this well
virtual ConvergenceReport getWellConvergence ( Simulator & ebosSimulator ,
const std : : vector < double > & B_avg ,
const ModelParameters & param ) const ;
/// computing the accumulation term for later use in well mass equations
virtual void computeAccumWell ( ) ;
virtual void computeWellConnectionPressures ( const Simulator & ebosSimulator ,
const WellState & xw ) ;
/// Ax = Ax - C D^-1 B x
virtual void apply ( const BVector & x , BVector & Ax ) const ;
/// r = r - C D^-1 Rw
virtual void apply ( BVector & r ) const ;
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState ( const BVector & x , const ModelParameters & param ,
WellState & well_state ) const ;
/// computing the well potentials for group control
virtual void computeWellPotentials ( const Simulator & ebosSimulator ,
const WellState & well_state ,
std : : vector < double > & well_potentials ) const ;
virtual void updatePrimaryVariables ( const WellState & well_state ) const ;
2017-08-29 10:26:36 -05:00
virtual void solveEqAndUpdateWellState ( const ModelParameters & param ,
WellState & well_state ) ; // const?
2017-08-28 10:30:22 -05:00
/// number of segments for this well
/// int number_of_segments_;
int numberOfSegments ( ) const ;
int numberOfPerforations ( ) const ;
2017-08-17 08:49:54 -05:00
protected :
int number_segments_ ;
// components of the pressure drop to be included
WellSegment : : CompPressureDropEnum compPressureDrop ( ) const ;
// multi-phase flow model
WellSegment : : MultiPhaseModelEnum multiphaseModel ( ) const ;
// get the SegmentSet from the well_ecl_
const SegmentSet & segmentSet ( ) const ;
using Base : : well_ecl_ ;
using Base : : number_of_perforations_ ; // TODO: can use well_ecl_?
using Base : : well_cells_ ; // TODO: are the perforation orders same with StandardWell or Wells?
using Base : : well_index_ ;
using Base : : well_controls_ ;
// TODO: trying to use the information from the Well opm-parser as much
// as possible, it will possibly be re-implemented later for efficiency reason.
// indices of the gird blocks that segments locate at.
// TODO: the grid cell related to a segment should be calculated based on the location
// of the segment node.
// As the current temporary solution, the grid cell related to a segment determined by the
// first perforation cell related to the segment.
// when no perforation is related to the segment, use it outlet segment's cell.
std : : vector < int > segment_cell_ ;
2017-08-31 11:22:48 -05:00
// the completions that is related to each segment
// the completions's ids are their location in the vector well_index_, well_cell_
// This is also assuming the order of the completions in Well is the same with
// the order of the completions in wells.
// it is for convinience reason. we can just calcuate the inforation for segment once then using it for all the perofrations
// belonging to this segment
std : : vector < std : : vector < int > > segment_perforations_ ;
2017-08-17 08:49:54 -05:00
// Things are easy to get from SegmentSet
// segment_volume_, segment_cross_area_, segment_length_(total length), segment_depth_
// segment_internal_diameter_, segment_roughness_
// outlet_segment_., in the outlet_segment, we store the ID of the segment, we will need to use numberToLocation to get
// their location in the segmentSet
// segment number is an ID of the segment, it is specified in the deck
// get the loation of the segment with a segment number in the segmentSet
int numberToLocation ( const int segment_number ) const ;
// TODO, the following should go to a class for computing purpose
// two off-diagonal matrices
mutable OffDiagMatWell duneB_ ;
mutable OffDiagMatWell duneC_ ;
// diagonal matrix for the well
mutable DiagMatWell invDuneD_ ;
// several vector used in the matrix calculation
mutable BVectorWell Bx_ ;
mutable BVectorWell invDrw_ ;
mutable BVector scaleAddRes_ ;
// residuals of the well equations
BVectorWell resWell_ ;
// the values for the primary varibles
// based on different solutioin strategies, the wells can have different primary variables
// TODO: should we introduce a data structure for segment to simplify this?
2017-08-29 10:26:36 -05:00
// or std::vector<std::vector<double> >
mutable std : : vector < std : : array < double , numWellEq > > primary_variables_ ;
2017-08-17 08:49:54 -05:00
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
2017-08-29 10:26:36 -05:00
mutable std : : vector < std : : array < EvalWell , numWellEq > > primary_variables_evaluation_ ;
// protected functions
// EvalWell getBhp(); this one should be something similar to getSegmentPressure();
// EvalWell getQs(); this one should be something similar to getSegmentRates()
// EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed.
// bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed
// xw = inv(D)*(rw - C*x)
void recoverSolutionWell ( const BVector & x , BVectorWell & xw ) const ;
// updating the well_state based on well solution dwells
void updateWellState ( const BVectorWell & dwells ,
const BlackoilModelParameters & param ,
WellState & well_state ) const ;
// void computePerfRate() will be a key function here.
2017-08-17 08:49:54 -05:00
} ;
}
# include "MultisegmentWell_impl.hpp"
# endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED