opm-simulators/opm/simulators/flow/FIPContainer.cpp

448 lines
15 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <opm/simulators/flow/FIPContainer.hpp>
#include <opm/input/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/GenericOilGasFluidSystem.hpp>
#include <opm/output/data/Solution.hpp>
#include <algorithm>
namespace Opm {
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
allocate(const std::size_t bufferSize,
const SummaryConfig& summaryConfig,
const bool forceAlloc,
std::map<std::string, int>& rstKeywords)
{
using namespace std::string_literals;
const auto fipctrl = std::array {
std::pair { "FIP"s , &OutputRestart::noPrefix },
std::pair { "SFIP"s, &OutputRestart::surface },
std::pair { "RFIP"s, &OutputRestart::reservoir },
};
this->outputRestart_.clearBits();
for (const auto& [mnemonic, kind] : fipctrl) {
if (auto fipPos = rstKeywords.find(mnemonic);
fipPos != rstKeywords.end())
{
fipPos->second = 0;
this->outputRestart_.*kind = true;
}
}
bool computeFip = false;
bufferSize_ = bufferSize;
for (const auto& phase : Inplace::phases()) {
if (forceAlloc || summaryConfig.require3DField(Inplace::EclString(phase))) {
this->add(phase);
computeFip = true;
}
else {
this->fip_[phase].clear();
}
}
return computeFip;
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::add(const Inplace::Phase phase)
{
this->fip_[phase].resize(bufferSize_, 0.0);
}
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
has(const Inplace::Phase phase) const
{
const auto it = this->fip_.find(phase);
return it != this->fip_.end() && !it->second.empty();
}
template<class FluidSystem>
bool
FIPContainer<FluidSystem>::
hasCo2InGas() const
{
static const auto phases = std::array {
Inplace::Phase::CO2InGasPhaseInMob,
Inplace::Phase::CO2InGasPhaseMob,
Inplace::Phase::CO2MassInGasPhaseInMob,
Inplace::Phase::CO2MassInGasPhaseMob,
Inplace::Phase::CO2Mass,
Inplace::Phase::CO2MassInGasPhase,
Inplace::Phase::CO2InGasPhaseInMobKrg,
Inplace::Phase::CO2InGasPhaseMobKrg,
Inplace::Phase::CO2MassInGasPhaseInMobKrg,
Inplace::Phase::CO2MassInGasPhaseMobKrg,
Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped,
Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped,
Inplace::Phase::CO2MassInGasPhaseMaximumTrapped,
Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped,
};
return std::any_of(phases.begin(), phases.end(),
[this](const auto phase) { return has(phase); });
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignCo2InGas(const unsigned globalDofIdx, const Co2InGasInput& v)
{
const Scalar massGas = (1.0 - v.xgW) * v.pv * v.rhog;
if (!this->fip_[Inplace::Phase::CO2Mass].empty()) {
this->fip_[Inplace::Phase::CO2Mass][globalDofIdx] = massGas * v.sg;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhase].empty()) {
this->fip_[Inplace::Phase::CO2MassInGasPhase][globalDofIdx] = massGas * v.sg;
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseInMob].empty()) {
const Scalar imMobileGas = massGas / v.mM * std::min(v.sgcr , v.sg);
this->fip_[Inplace::Phase::CO2InGasPhaseInMob][globalDofIdx] = imMobileGas;
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseMob].empty()) {
const Scalar mobileGas = massGas / v.mM * std::max(Scalar{0.0}, v.sg - v.sgcr);
this->fip_[Inplace::Phase::CO2InGasPhaseMob][globalDofIdx] = mobileGas;
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg].empty()) {
if (v.sgcr >= v.sg) {
const Scalar imMobileGasKrg = massGas / v.mM * v.sg;
this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg][globalDofIdx] = imMobileGasKrg;
} else {
this->fip_[Inplace::Phase::CO2InGasPhaseInMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg].empty()) {
if (v.sg > v.sgcr) {
const Scalar mobileGasKrg = massGas / v.mM * v.sg;
this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg][globalDofIdx] = mobileGasKrg;
} else {
this->fip_[Inplace::Phase::CO2InGasPhaseMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseInMob].empty()) {
const Scalar imMobileMassGas = massGas * std::min(v.sgcr , v.sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMob][globalDofIdx] = imMobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMob].empty()) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, v.sg - v.sgcr);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMob][globalDofIdx] = mobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg].empty()) {
if (v.sgcr >= v.sg) {
const Scalar imMobileMassGasKrg = massGas * v.sg;
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg][globalDofIdx] = imMobileMassGasKrg;
} else {
this->fip_[Inplace::Phase::CO2MassInGasPhaseInMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg].empty()) {
if (v.sg > v.sgcr) {
const Scalar mobileMassGasKrg = massGas * v.sg;
this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg][globalDofIdx] = mobileMassGasKrg;
} else {
this->fip_[Inplace::Phase::CO2MassInGasPhaseMobKrg][globalDofIdx] = 0;
}
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped].empty()) {
const Scalar imMobileMassGas = massGas * std::min(v.trappedGas, v.sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumTrapped][globalDofIdx] = imMobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped].empty()) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, v.sg - v.trappedGas);
this->fip_[Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped][globalDofIdx] = mobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped].empty()) {
const Scalar imMobileMassGas = massGas * std::min(v.strandedGas, v.sg);
this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped][globalDofIdx] = imMobileMassGas;
}
if (!this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped].empty()) {
const Scalar mobileMassGas = massGas * std::max(Scalar{0.0}, v.sg - v.strandedGas);
this->fip_[Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped][globalDofIdx] = mobileMassGas;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignGasWater(const unsigned globalDofIdx,
const std::array<Scalar, numPhases>& fip,
const Scalar gasInPlaceWater,
const Scalar waterInPlaceGas)
{
if (!this->fip_[Inplace::Phase::WaterInGasPhase].empty()) {
this->fip_[Inplace::Phase::WaterInGasPhase][globalDofIdx] = waterInPlaceGas;
}
if (!this->fip_[Inplace::Phase::WaterInWaterPhase].empty()) {
this->fip_[Inplace::Phase::WaterInWaterPhase][globalDofIdx] = fip[waterPhaseIdx];
}
// For water+gas cases the gas in water is added to the GIPL value
if (!this->fip_[Inplace::Phase::GasInLiquidPhase].empty() &&
!FluidSystem::phaseIsActive(oilPhaseIdx))
{
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceWater;
}
// Add dissolved gas and vaporized water to total Fip
if (!this->fip_[Inplace::Phase::WATER].empty()) {
this->fip_[Inplace::Phase::WATER][globalDofIdx] += waterInPlaceGas;
}
if (!this->fip_[Inplace::Phase::GAS].empty()) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceWater;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignVolumesSurface(const unsigned globalDofIdx,
const std::array<Scalar, numPhases>& fip)
{
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
!this->fip_[Inplace::Phase::OIL].empty())
{
this->fip_[Inplace::Phase::OIL][globalDofIdx] = fip[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
!this->fip_[Inplace::Phase::OilInLiquidPhase].empty())
{
this->fip_[Inplace::Phase::OilInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
!this->fip_[Inplace::Phase::GAS].empty())
{
this->fip_[Inplace::Phase::GAS][globalDofIdx] = fip[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
!this->fip_[Inplace::Phase::GasInGasPhase].empty())
{
this->fip_[Inplace::Phase::GasInGasPhase][globalDofIdx] = fip[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
!this->fip_[Inplace::Phase::WATER].empty())
{
this->fip_[Inplace::Phase::WATER][globalDofIdx] = fip[waterPhaseIdx];
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignVolumesReservoir(const unsigned globalDofIdx,
const Scalar saltConcentration,
const std::array<Scalar, numPhases>& fipr)
{
if (FluidSystem::phaseIsActive(oilPhaseIdx) &&
!this->fip_[Inplace::Phase::OilResVolume].empty())
{
this->fip_[Inplace::Phase::OilResVolume][globalDofIdx] = fipr[oilPhaseIdx];
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) &&
!this->fip_[Inplace::Phase::GasResVolume].empty())
{
this->fip_[Inplace::Phase::GasResVolume][globalDofIdx] = fipr[gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
!this->fip_[Inplace::Phase::WaterResVolume].empty())
{
this->fip_[Inplace::Phase::WaterResVolume][globalDofIdx] = fipr[waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) &&
!this->fip_[Inplace::Phase::SALT].empty())
{
this->fip_[Inplace::Phase::SALT][globalDofIdx] =
fipr[waterPhaseIdx] * saltConcentration;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignCo2InWater(const unsigned globalDofIdx,
const Scalar co2InWater,
const Scalar mM)
{
if (!this->fip_[Inplace::Phase::CO2Mass].empty()) {
this->fip_[Inplace::Phase::CO2Mass][globalDofIdx] += co2InWater * mM;
}
if (!this->fip_[Inplace::Phase::CO2MassInWaterPhase].empty()) {
this->fip_[Inplace::Phase::CO2MassInWaterPhase][globalDofIdx] = co2InWater * mM;
}
if (!this->fip_[Inplace::Phase::CO2InWaterPhase].empty()) {
this->fip_[Inplace::Phase::CO2InWaterPhase][globalDofIdx] = co2InWater;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignOilGasDistribution(const unsigned globalDofIdx,
const Scalar gasInPlaceLiquid,
const Scalar oilInPlaceGas)
{
if (!this->fip_[Inplace::Phase::GasInLiquidPhase].empty()) {
this->fip_[Inplace::Phase::GasInLiquidPhase][globalDofIdx] = gasInPlaceLiquid;
}
if (!this->fip_[Inplace::Phase::OilInGasPhase].empty()) {
this->fip_[Inplace::Phase::OilInGasPhase][globalDofIdx] = oilInPlaceGas;
}
// Add dissolved gas and vaporized oil to total Fip
if (!this->fip_[Inplace::Phase::OIL].empty()) {
this->fip_[Inplace::Phase::OIL][globalDofIdx] += oilInPlaceGas;
}
if (!this->fip_[Inplace::Phase::GAS].empty()) {
this->fip_[Inplace::Phase::GAS][globalDofIdx] += gasInPlaceLiquid;
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
outputRestart(data::Solution& sol)
{
if (!this->outputRestart_) {
return;
}
using namespace std::string_literals;
using M = UnitSystem::measure;
using FIPEntry = std::tuple<std::string, M, Inplace::Phase>;
auto fipArrays = std::vector<FIPEntry> {};
if (this->outputRestart_.surface) {
fipArrays.insert(fipArrays.end(), {
FIPEntry {"SFIPOIL"s, M::liquid_surface_volume, Inplace::Phase::OIL },
FIPEntry {"SFIPWAT"s, M::liquid_surface_volume, Inplace::Phase::WATER },
FIPEntry {"SFIPGAS"s, M::gas_surface_volume, Inplace::Phase::GAS },
});
}
if (this->outputRestart_.reservoir) {
fipArrays.insert(fipArrays.end(), {
FIPEntry {"RFIPOIL"s, M::volume, Inplace::Phase::OilResVolume },
FIPEntry {"RFIPWAT"s, M::volume, Inplace::Phase::WaterResVolume },
FIPEntry {"RFIPGAS"s, M::volume, Inplace::Phase::GasResVolume },
});
}
if (this->outputRestart_.noPrefix && !this->outputRestart_.surface) {
fipArrays.insert(fipArrays.end(), {
FIPEntry { "FIPOIL"s, M::liquid_surface_volume, Inplace::Phase::OIL },
FIPEntry { "FIPWAT"s, M::liquid_surface_volume, Inplace::Phase::WATER },
FIPEntry { "FIPGAS"s, M::gas_surface_volume, Inplace::Phase::GAS },
});
}
for (const auto& [mnemonic, unit, phase] : fipArrays) {
if (! this->fip_[phase].empty()) {
sol.insert(mnemonic, unit, std::move(this->fip_[phase]),
data::TargetType::RESTART_SOLUTION);
}
}
for (const auto& phase : Inplace::mixingPhases()) {
if (! this->fip_[phase].empty()) {
sol.insert(Inplace::EclString(phase),
UnitSystem::measure::volume,
this->fip_[phase],
data::TargetType::SUMMARY);
}
}
}
template<class FluidSystem>
void
FIPContainer<FluidSystem>::
assignPoreVolume(const unsigned globalDofIdx,
const Scalar value)
{
this->fip_[Inplace::Phase::PoreVolume][globalDofIdx] = value;
}
template<class T> using FS = BlackOilFluidSystem<T,BlackOilDefaultIndexTraits>;
#define INSTANTIATE_TYPE(T) \
template class FIPContainer<FS<T>>;
INSTANTIATE_TYPE(double)
#if FLOW_INSTANTIATE_FLOAT
INSTANTIATE_TYPE(float)
#endif
#define INSTANTIATE_COMP(NUM) \
template<class T> using FS##NUM = GenericOilGasFluidSystem<T, NUM>; \
template class FIPContainer<FS##NUM<double>>;
INSTANTIATE_COMP(0)
INSTANTIATE_COMP(2)
INSTANTIATE_COMP(3)
INSTANTIATE_COMP(4)
INSTANTIATE_COMP(5)
INSTANTIATE_COMP(6)
INSTANTIATE_COMP(7)
} // namespace Opm