opm-simulators/opm/simulators/flow/Main.hpp

795 lines
28 KiB
C++
Raw Normal View History

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MAIN_HEADER_INCLUDED
#define OPM_MAIN_HEADER_INCLUDED
#include <flow/flow_ebos_blackoil.hpp>
#include <flow/flow_ebos_blackoil_legacyassembly.hpp>
#include <flow/flow_ebos_gasoil.hpp>
#include <flow/flow_ebos_gasoildiffuse.hpp>
#include <flow/flow_ebos_gasoil_energy.hpp>
#include <flow/flow_ebos_oilwater.hpp>
#include <flow/flow_ebos_gaswater.hpp>
#include <flow/flow_ebos_solvent.hpp>
#include <flow/flow_ebos_polymer.hpp>
#include <flow/flow_ebos_extbo.hpp>
#include <flow/flow_ebos_foam.hpp>
#include <flow/flow_ebos_brine.hpp>
#include <flow/flow_ebos_brine_saltprecipitation.hpp>
#include <flow/flow_ebos_gaswater_saltprec_vapwat.hpp>
#include <flow/flow_ebos_brine_precsalt_vapwat.hpp>
#include <flow/flow_ebos_onephase.hpp>
#include <flow/flow_ebos_onephase_energy.hpp>
#include <flow/flow_ebos_oilwater_brine.hpp>
2021-12-08 07:35:22 -06:00
#include <flow/flow_ebos_gaswater_brine.hpp>
#include <flow/flow_ebos_energy.hpp>
#include <flow/flow_ebos_oilwater_polymer.hpp>
#include <flow/flow_ebos_oilwater_polymer_injectivity.hpp>
#include <flow/flow_ebos_micp.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Parser/ErrorGuard.hpp>
#include <opm/input/eclipse/Parser/Parser.hpp>
#include <opm/input/eclipse/Parser/ParseContext.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/checkDeck.hpp>
#include <opm/input/eclipse/Schedule/ArrayDimChecker.hpp>
#include <opm/input/eclipse/Schedule/UDQ/UDQState.hpp>
#include <opm/input/eclipse/Schedule/Action/State.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/models/utils/propertysystem.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/simulators/flow/FlowMainEbos.hpp>
#include <opm/simulators/utils/readDeck.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
#if HAVE_MPI
#include <opm/simulators/utils/ParallelEclipseState.hpp>
#endif
#include <cassert>
#include <cstdlib>
2021-11-01 06:31:40 -05:00
#include <filesystem>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
namespace Opm::Properties {
// this is a dummy type tag that is used to setup the parameters before the actual
// simulator.
namespace TTag {
struct FlowEarlyBird {
using InheritsFrom = std::tuple<EclFlowProblem>;
};
}
} // namespace Opm::Properties
namespace Opm {
// ----------------- Main program -----------------
template <class TypeTag>
int flowEbosMain(int argc, char** argv, bool outputCout, bool outputFiles)
{
// we always want to use the default locale, and thus spare us the trouble
// with incorrect locale settings.
resetLocale();
FlowMainEbos<TypeTag> mainfunc(argc, argv, outputCout, outputFiles);
return mainfunc.execute();
}
// ----------------- Main class -----------------
// For now, we will either be instantiated from main() in flow.cpp,
// or from a Python pybind11 module..
// NOTE (March 2020): When used from a pybind11 module, we do not neccessarily
// want to run the whole simulation by calling run(), it is also
// useful to just run one report step at a time. According to these different
// usage scenarios, we refactored the original run() in flow.cpp into this class.
class Main
{
public:
Main(int argc, char** argv) : argc_(argc), argv_(argv) { initMPI(); }
// This constructor can be called from Python
Main(const std::string& filename)
{
setArgvArgc_(filename);
initMPI();
}
// This constructor can be called from Python when Python has
// already parsed a deck
Main(std::shared_ptr<Deck> deck,
std::shared_ptr<EclipseState> eclipseState,
std::shared_ptr<Schedule> schedule,
std::shared_ptr<SummaryConfig> summaryConfig)
: deck_{std::move(deck)}
, eclipseState_{std::move(eclipseState)}
, schedule_{std::move(schedule)}
, summaryConfig_{std::move(summaryConfig)}
{
setArgvArgc_(deck_->getDataFile());
initMPI();
}
~Main()
{
#if HAVE_MPI
if (test_split_comm_) {
// Cannot use EclGenericVanguard::comm()
// to get world size here, as it may be
// a split communication at this point.
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
if (world_size > 1) {
MPI_Comm new_comm = EclGenericVanguard::comm();
int result;
MPI_Comm_compare(MPI_COMM_WORLD, new_comm, &result);
assert(result == MPI_UNEQUAL);
MPI_Comm_free(&new_comm);
}
}
#endif // HAVE_MPI
EclGenericVanguard::setCommunication(nullptr);
2021-08-12 05:54:03 -05:00
#if HAVE_MPI && !HAVE_DUNE_FEM
MPI_Finalize();
#endif
}
void setArgvArgc_(const std::string& filename)
{
this->deckFilename_ = filename;
this->flowProgName_ = "flow";
this->argc_ = 2;
this->saveArgs_[0] = const_cast<char *>(this->flowProgName_.c_str());
this->saveArgs_[1] = const_cast<char *>(this->deckFilename_.c_str());
// Note: argv[argc] must exist and be nullptr
assert ((sizeof this->saveArgs_) > (this->argc_ * sizeof this->saveArgs_[0]));
this->saveArgs_[this->argc_] = nullptr;
this->argv_ = this->saveArgs_;
}
void initMPI()
{
2021-08-12 05:54:03 -05:00
#if HAVE_DUNE_FEM
Dune::Fem::MPIManager::initialize(argc_, argv_);
2021-08-12 05:54:03 -05:00
#elif HAVE_MPI
MPI_Init(&argc_, &argv_);
2021-08-12 05:54:03 -05:00
#endif
EclGenericVanguard::setCommunication(std::make_unique<Parallel::Communication>());
handleTestSplitCommunicatorCmdLine_();
#if HAVE_MPI
if (test_split_comm_ && EclGenericVanguard::comm().size() > 1) {
int world_rank = EclGenericVanguard::comm().rank();
int color = (world_rank == 0);
MPI_Comm new_comm;
MPI_Comm_split(EclGenericVanguard::comm(), color, world_rank, &new_comm);
isSimulationRank_ = (world_rank > 0);
EclGenericVanguard::setCommunication(std::make_unique<Parallel::Communication>(new_comm));
}
#endif // HAVE_MPI
}
2021-08-12 05:54:03 -05:00
int runDynamic()
{
int exitCode = EXIT_SUCCESS;
if (isSimulationRank_) {
if (initialize_<Properties::TTag::FlowEarlyBird>(exitCode)) {
return this->dispatchDynamic_();
}
}
return exitCode;
}
template <class TypeTag>
int runStatic()
{
int exitCode = EXIT_SUCCESS;
if (isSimulationRank_) {
if (initialize_<TypeTag>(exitCode)) {
return this->dispatchStatic_<TypeTag>();
}
}
return exitCode;
}
using FlowMainEbosType = FlowMainEbos<Properties::TTag::EclFlowProblem>;
// To be called from the Python interface code. Only do the
// initialization and then return a pointer to the FlowEbosMain
// object that can later be accessed directly from the Python interface
// to e.g. advance the simulator one report step
std::unique_ptr<FlowMainEbosType> initFlowEbosBlackoil(int& exitCode)
{
exitCode = EXIT_SUCCESS;
if (initialize_<Properties::TTag::FlowEarlyBird>(exitCode)) {
// TODO: check that this deck really represents a blackoil
// case. E.g. check that number of phases == 3
EclGenericVanguard::setParams(
setupTime_,
deck_,
eclipseState_,
schedule_,
std::move(udqState_),
std::move(this->actionState_),
std::move(this->wtestState_),
summaryConfig_);
return flowEbosBlackoilMainInit(
argc_, argv_, outputCout_, outputFiles_);
} else {
//NOTE: exitCode was set by initialize_() above;
return std::unique_ptr<FlowMainEbosType>(); // nullptr
}
}
private:
int dispatchDynamic_()
{
const auto& rspec = this->eclipseState_->runspec();
const auto& phases = rspec.phases();
EclGenericVanguard::setParams(this->setupTime_,
this->deck_,
this->eclipseState_,
this->schedule_,
std::move(this->udqState_),
std::move(this->actionState_),
std::move(this->wtestState_),
this->summaryConfig_);
// run the actual simulator
//
// TODO: make sure that no illegal combinations like thermal and
// twophase are requested.
const bool thermal = eclipseState_->getSimulationConfig().isThermal();
// Single-phase case
if (rspec.micp()) {
return this->runMICP(phases);
}
// water-only case
else if(phases.size() == 1 && phases.active(Phase::WATER) && !thermal) {
return this->runWaterOnly(phases);
}
// water-only case with energy
else if(phases.size() == 2 && phases.active(Phase::WATER) && thermal) {
return this->runWaterOnlyEnergy(phases);
}
// Twophase cases
else if (phases.size() == 2 && !thermal) {
return this->runTwoPhase(phases);
}
// Polymer case
else if (phases.active(Phase::POLYMER)) {
return this->runPolymer(phases);
}
// Foam case
else if (phases.active(Phase::FOAM)) {
return this->runFoam();
}
// Brine case
else if (phases.active(Phase::BRINE)) {
return this->runBrine(phases);
}
// Solvent case
else if (phases.active(Phase::SOLVENT)) {
return this->runSolvent();
}
// Extended BO case
else if (phases.active(Phase::ZFRACTION)) {
return this->runExtendedBlackOil();
}
// Energy case
else if (thermal) {
return this->runThermal(phases);
}
// Blackoil case
else if (phases.size() == 3) {
return this->runBlackOil();
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid are "
<< "Twophase, polymer, foam, brine, solvent, "
<< "energy, and blackoil.\n";
}
return EXIT_FAILURE;
}
}
template <class TypeTag>
int dispatchStatic_()
{
EclGenericVanguard::setParams(this->setupTime_,
this->deck_,
this->eclipseState_,
this->schedule_,
std::move(this->udqState_),
std::move(this->actionState_),
std::move(this->wtestState_),
this->summaryConfig_);
return flowEbosMain<TypeTag>(argc_, argv_, outputCout_, outputFiles_);
}
/// \brief Initialize
/// \param exitCode The exitCode of the program.
///
/// \return Whether to actually run the simulator. I.e. true if
/// parsing of command line was successful and no --help,
/// --print-properties, or --print-parameters have been found.
template <class TypeTagEarlyBird>
bool initialize_(int& exitCode)
{
Dune::Timer externalSetupTimer;
externalSetupTimer.start();
handleVersionCmdLine_(argc_, argv_);
#if HAVE_DUNE_FEM
int mpiRank = Dune::Fem::MPIManager::rank();
#else
int mpiRank = EclGenericVanguard::comm().rank();
#endif
// we always want to use the default locale, and thus spare us the trouble
// with incorrect locale settings.
resetLocale();
// this is a work-around for a catch 22: we do not know what code path to use without
// parsing the deck, but we don't know the deck without having access to the
// parameters and this requires to know the type tag to be used. To solve this, we
// use a type tag just for parsing the parameters before we instantiate the actual
// simulator object. (Which parses the parameters again, but since this is done in an
// identical manner it does not matter.)
typedef TypeTagEarlyBird PreTypeTag;
using PreProblem = GetPropType<PreTypeTag, Properties::Problem>;
PreProblem::setBriefDescription("Flow, an advanced reservoir simulator for ECL-decks provided by the Open Porous Media project.");
int status = FlowMainEbos<PreTypeTag>::setupParameters_(argc_, argv_, EclGenericVanguard::comm());
if (status != 0) {
// if setupParameters_ returns a value smaller than 0, there was no error, but
// the program should abort. This is the case e.g. for the --help and the
// --print-properties parameters.
#if HAVE_MPI
if (status >= 0)
MPI_Abort(MPI_COMM_WORLD, status);
#endif
exitCode = (status > 0) ? status : EXIT_SUCCESS;
return false; // Whether to run the simulator
}
FileOutputMode outputMode = FileOutputMode::OUTPUT_NONE;
outputCout_ = false;
if (mpiRank == 0)
outputCout_ = EWOMS_GET_PARAM(PreTypeTag, bool, EnableTerminalOutput);
std::string deckFilename;
std::string outputDir;
if ( eclipseState_ ) {
deckFilename = eclipseState_->getIOConfig().fullBasePath();
outputDir = eclipseState_->getIOConfig().getOutputDir();
}
else {
deckFilename = EWOMS_GET_PARAM(PreTypeTag, std::string, EclDeckFileName);
}
if (deckFilename.empty()) {
if (mpiRank == 0) {
std::cerr << "No input case given. Try '--help' for a usage description.\n";
}
exitCode = EXIT_FAILURE;
return false;
}
using PreVanguard = GetPropType<PreTypeTag, Properties::Vanguard>;
try {
deckFilename = PreVanguard::canonicalDeckPath(deckFilename);
}
catch (const std::exception& e) {
if ( mpiRank == 0 ) {
std::cerr << "Exception received: " << e.what() << ". Try '--help' for a usage description.\n";
}
#if HAVE_MPI
MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
#endif
exitCode = EXIT_FAILURE;
return false;
}
if (outputCout_) {
FlowMainEbos<PreTypeTag>::printBanner(EclGenericVanguard::comm());
}
// Create Deck and EclipseState.
try {
auto python = std::make_shared<Python>();
const bool init_from_restart_file = !EWOMS_GET_PARAM(PreTypeTag, bool, SchedRestart);
if (outputDir.empty())
outputDir = EWOMS_GET_PARAM(PreTypeTag, std::string, OutputDir);
const bool allRanksDbgPrtLog = EWOMS_GET_PARAM(PreTypeTag, bool,
EnableLoggingFalloutWarning);
outputMode = setupLogging(mpiRank,
deckFilename,
outputDir,
EWOMS_GET_PARAM(PreTypeTag, std::string, OutputMode),
outputCout_, "STDOUT_LOGGER", allRanksDbgPrtLog);
auto parseContext =
std::make_unique<ParseContext>(std::vector<std::pair<std::string , InputError::Action>>
{{ParseContext::PARSE_RANDOM_SLASH, InputError::IGNORE},
{ParseContext::PARSE_MISSING_DIMS_KEYWORD, InputError::WARN},
{ParseContext::SUMMARY_UNKNOWN_WELL, InputError::WARN},
{ParseContext::SUMMARY_UNKNOWN_GROUP, InputError::WARN}});
if (EWOMS_GET_PARAM(PreTypeTag, bool, EclStrictParsing))
parseContext->update(InputError::DELAYED_EXIT1);
FlowMainEbos<PreTypeTag>::printPRTHeader(outputCout_);
if (outputCout_) {
OpmLog::info("Reading deck file '" + deckFilename + "'");
}
std::optional<int> outputInterval;
int output_param = EWOMS_GET_PARAM(PreTypeTag, int, EclOutputInterval);
if (output_param >= 0)
outputInterval = output_param;
readDeck(EclGenericVanguard::comm(), deckFilename, deck_, eclipseState_, schedule_, udqState_, actionState_, wtestState_,
summaryConfig_, nullptr, python, std::move(parseContext),
init_from_restart_file, outputCout_, outputInterval);
verifyValidCellGeometry(EclGenericVanguard::comm(), *this->eclipseState_);
setupTime_ = externalSetupTimer.elapsed();
outputFiles_ = (outputMode != FileOutputMode::OUTPUT_NONE);
}
catch (const std::invalid_argument& e)
{
if (outputCout_) {
std::cerr << "Failed to create valid EclipseState object." << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
}
#if HAVE_MPI
MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
#endif
exitCode = EXIT_FAILURE;
return false;
}
exitCode = EXIT_SUCCESS;
return true;
}
std::filesystem::path simulationCaseName_(const std::string& casename)
{
namespace fs = ::std::filesystem;
auto exists = [](const fs::path& f)
{
return (fs::exists(f) && fs::is_regular_file(f))
|| (fs::is_symlink(f) &&
fs::is_regular_file(fs::read_symlink(f)));
};
auto simcase = fs::path { casename };
if (exists(simcase)) {
return simcase;
}
for (const auto& ext : { std::string("DATA"), std::string("data") }) {
if (exists(simcase.replace_extension(ext))) {
return simcase;
}
}
throw std::invalid_argument {
"Cannot find input case '" + casename + '\''
};
}
// This function is an extreme special case, if the program has been invoked
// *exactly* as:
//
// flow --version
//
// the call is intercepted by this function which will print "flow $version"
// on stdout and exit(0).
void handleVersionCmdLine_(int argc, char** argv)
{
auto pos = std::find_if(argv, argv + argc,
[](const char* arg)
{
return std::strcmp(arg, "--version") == 0;
});
if (pos != argv + argc) {
std::cout << "flow " << moduleVersionName() << std::endl;
std::exit(EXIT_SUCCESS);
}
}
// This function is a special case, if the program has been invoked
// with the argument "--test-split-communicator=true" as the FIRST
// argument, it will be removed from the argument list and we set the
// test_split_comm_ flag to true.
// Note: initializing the parameter system before MPI could make this
// use the parameter system instead.
void handleTestSplitCommunicatorCmdLine_()
{
if (argc_ >= 2 && std::strcmp(argv_[1], "--test-split-communicator=true") == 0) {
test_split_comm_ = true;
--argc_; // We have one less argument.
argv_[1] = argv_[0]; // What used to be the first proper argument now becomes the command argument.
++argv_; // Pretend this is what it always was.
}
}
int runMICP(const Phases& phases)
{
if (!phases.active(Phase::WATER) || (phases.size() > 2)) {
if (outputCout_) {
std::cerr << "No valid configuration is found for MICP simulation, "
<< "the only valid option is water + MICP\n";
}
return EXIT_FAILURE;
}
return flowEbosMICPMain(this->argc_,
this->argv_,
this->outputCout_,
this->outputFiles_);
}
int runTwoPhase(const Phases& phases)
{
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive();
// oil-gas
if (phases.active( Phase::OIL ) && phases.active( Phase::GAS )) {
if (diffusive) {
return flowEbosGasOilDiffuseMain(argc_, argv_, outputCout_, outputFiles_);
} else {
return flowEbosGasOilMain(argc_, argv_, outputCout_, outputFiles_);
}
}
// oil-water
else if ( phases.active( Phase::OIL ) && phases.active( Phase::WATER ) ) {
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for the two-phase water/oil model." << std::endl;
}
return EXIT_FAILURE;
}
return flowEbosOilWaterMain(argc_, argv_, outputCout_, outputFiles_);
}
// gas-water
else if ( phases.active( Phase::GAS ) && phases.active( Phase::WATER ) ) {
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for the two-phase gas/water model." << std::endl;
}
return EXIT_FAILURE;
}
return flowEbosGasWaterMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid are Twophase (oilwater, oilgas and gaswater), polymer, solvent, or blackoil" << std::endl;
}
return EXIT_FAILURE;
}
}
int runPolymer(const Phases& phases)
{
if (! phases.active(Phase::WATER)) {
if (outputCout_)
std::cerr << "No valid configuration is found for polymer simulation, valid options include "
<< "oilwater + polymer and blackoil + polymer" << std::endl;
return EXIT_FAILURE;
}
// Need to track the polymer molecular weight
// for the injectivity study
if (phases.active(Phase::POLYMW)) {
// only oil water two phase for now
assert (phases.size() == 4);
return flowEbosOilWaterPolymerInjectivityMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.size() == 3) { // oil water polymer case
return flowEbosOilWaterPolymerMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowEbosPolymerMain(argc_, argv_, outputCout_, outputFiles_);
}
}
int runFoam()
{
return flowEbosFoamMain(argc_, argv_, outputCout_, outputFiles_);
}
int runWaterOnly(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 1) {
if (outputCout_)
std::cerr << "No valid configuration is found for water-only simulation, valid options include "
<< "water, water + thermal" << std::endl;
return EXIT_FAILURE;
}
return flowEbosWaterOnlyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runWaterOnlyEnergy(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 2) {
if (outputCout_)
std::cerr << "No valid configuration is found for water-only simulation, valid options include "
<< "water, water + thermal" << std::endl;
return EXIT_FAILURE;
}
return flowEbosWaterOnlyEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runBrine(const Phases& phases)
{
2022-01-11 07:23:37 -06:00
if (! phases.active(Phase::WATER) || phases.size() == 2) {
if (outputCout_)
std::cerr << "No valid configuration is found for brine simulation, valid options include "
2022-01-11 07:23:37 -06:00
<< "oilwater + brine, gaswater + brine and blackoil + brine" << std::endl;
return EXIT_FAILURE;
}
2021-12-08 07:35:22 -06:00
if (phases.size() == 3) {
if (phases.active(Phase::OIL)){ // oil water brine case
return flowEbosOilWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.active(Phase::GAS)){ // gas water brine case
if (eclipseState_->getSimulationConfig().hasPRECSALT() &&
eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowEbosGasWaterSaltprecVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowEbosGasWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
2021-12-08 07:35:22 -06:00
}
}
else if (eclipseState_->getSimulationConfig().hasPRECSALT()) {
if (eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowEbosBrinePrecsaltVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowEbosBrineSaltPrecipitationMain(argc_, argv_, outputCout_, outputFiles_);
}
}
else {
return flowEbosBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
return EXIT_FAILURE;
}
int runSolvent()
{
return flowEbosSolventMain(argc_, argv_, outputCout_, outputFiles_);
}
int runExtendedBlackOil()
{
return flowEbosExtboMain(argc_, argv_, outputCout_, outputFiles_);
}
int runThermal(const Phases& phases)
{
// oil-gas-thermal
if (!phases.active( Phase::WATER ) && phases.active( Phase::OIL ) && phases.active( Phase::GAS )) {
return flowEbosGasOilEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowEbosEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runBlackOil()
{
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive();
if (diffusive) {
// Use the traditional linearizer, as the TpfaLinearizer does not
// support the diffusion module yet.
return flowEbosBlackoilMain(argc_, argv_, outputCout_, outputFiles_);
} else {
return flowEbosBlackoilTpfaMain(argc_, argv_, outputCout_, outputFiles_);
}
}
int argc_{0};
char** argv_{nullptr};
bool outputCout_{false};
bool outputFiles_{false};
double setupTime_{0.0};
std::string deckFilename_{};
std::string flowProgName_{};
char *saveArgs_[3]{nullptr};
std::unique_ptr<UDQState> udqState_{};
std::unique_ptr<Action::State> actionState_{};
std::unique_ptr<WellTestState> wtestState_{};
// These variables may be owned by both Python and the simulator
std::shared_ptr<Deck> deck_{};
std::shared_ptr<EclipseState> eclipseState_{};
std::shared_ptr<Schedule> schedule_{};
std::shared_ptr<SummaryConfig> summaryConfig_{};
// To demonstrate run with non_world_comm
bool test_split_comm_ = false;
bool isSimulationRank_ = true;
};
} // namespace Opm
#endif // OPM_MAIN_HEADER_INCLUDED