opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp

1037 lines
44 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014 SINTEF ICT, Applied Mathematics.
Copyright (c) 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILOUTPUT_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOILOUTPUT_HEADER_INCLUDED
2018-02-09 06:42:16 -06:00
#include <opm/grid/UnstructuredGrid.h>
#include <opm/simulators/timestepping/SimulatorTimerInterface.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/autodiff/Compat.hpp>
#include <opm/core/utility/DataMap.hpp>
2015-10-08 04:43:36 -05:00
#include <opm/common/ErrorMacros.hpp>
2016-09-02 07:15:10 -05:00
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/common/utility/parameters/ParameterGroup.hpp>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
2017-06-06 14:35:05 -05:00
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/ParallelDebugOutput.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/ThreadHandle.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
2016-01-05 05:39:02 -06:00
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
2017-10-29 15:06:19 -05:00
#include <opm/parser/eclipse/EclipseState/SummaryConfig/SummaryConfig.hpp>
2016-01-05 05:39:02 -06:00
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/simulators/ensureDirectoryExists.hpp>
2016-01-05 05:39:02 -06:00
#include <string>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <thread>
#include <map>
#include <boost/filesystem.hpp>
#ifdef HAVE_OPM_GRID
2018-02-09 06:42:16 -06:00
#include <opm/grid/CpGrid.hpp>
#endif
namespace Opm
{
class SimulationDataContainer;
class BlackoilState;
void outputStateVtk(const UnstructuredGrid& grid,
const Opm::SimulationDataContainer& state,
const int step,
const std::string& output_dir);
void outputWellStateMatlab(const Opm::WellState& well_state,
const int step,
const std::string& output_dir);
#ifdef HAVE_OPM_GRID
void outputStateVtk(const Dune::CpGrid& grid,
const Opm::SimulationDataContainer& state,
const int step,
const std::string& output_dir);
#endif
template<class Grid>
void outputStateMatlab(const Grid& grid,
const Opm::SimulationDataContainer& state,
const int step,
const std::string& output_dir)
{
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
for (const auto& pair : state.cellData())
{
const std::string& name = pair.first;
std::string key;
if( name == "SURFACEVOL" ) {
key = "surfvolume";
}
else if( name == "RV" ) {
key = "rv";
}
else if( name == "GASOILRATIO" ) {
key = "rs";
}
else { // otherwise skip entry
continue;
}
// set data to datmap
dm[ key ] = &pair.second;
}
std::vector<double> cell_velocity;
Opm::estimateCellVelocity(AutoDiffGrid::numCells(grid),
AutoDiffGrid::numFaces(grid),
AutoDiffGrid::beginFaceCentroids(grid),
UgGridHelpers::faceCells(grid),
AutoDiffGrid::beginCellCentroids(grid),
AutoDiffGrid::beginCellVolumes(grid),
AutoDiffGrid::dimensions(grid),
state.faceflux(), cell_velocity);
dm["velocity"] = &cell_velocity;
// Write data (not grid) in Matlab format
for (Opm::DataMap::const_iterator it = dm.begin(); it != dm.end(); ++it) {
std::ostringstream fname;
fname << output_dir << "/" << it->first;
ensureDirectoryExists(fname.str());
fname << "/" << std::setw(3) << std::setfill('0') << step << ".txt";
std::ofstream file(fname.str().c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Failed to open " << fname.str());
}
file.precision(15);
const std::vector<double>& d = *(it->second);
std::copy(d.begin(), d.end(), std::ostream_iterator<double>(file, "\n"));
}
}
class BlackoilSubWriter {
public:
BlackoilSubWriter( const std::string& outputDir )
: outputDir_( outputDir )
{}
virtual void writeTimeStep(const SimulatorTimerInterface& timer,
const SimulationDataContainer& state,
const WellStateFullyImplicitBlackoil&,
bool /*substep*/ = false) = 0;
protected:
const std::string outputDir_;
};
template< class Grid >
class BlackoilVTKWriter : public BlackoilSubWriter {
public:
BlackoilVTKWriter( const Grid& grid,
const std::string& outputDir )
: BlackoilSubWriter( outputDir )
, grid_( grid )
{}
void writeTimeStep(const SimulatorTimerInterface& timer,
const SimulationDataContainer& state,
const WellStateFullyImplicitBlackoil&,
bool /*substep*/ = false) override
{
outputStateVtk(grid_, state, timer.currentStepNum(), outputDir_);
}
protected:
const Grid& grid_;
};
template< typename Grid >
class BlackoilMatlabWriter : public BlackoilSubWriter
{
public:
BlackoilMatlabWriter( const Grid& grid,
const std::string& outputDir )
: BlackoilSubWriter( outputDir )
, grid_( grid )
2015-02-17 06:44:33 -06:00
{}
void writeTimeStep(const SimulatorTimerInterface& timer,
const SimulationDataContainer& reservoirState,
const WellStateFullyImplicitBlackoil& wellState,
bool /*substep*/ = false) override
{
outputStateMatlab(grid_, reservoirState, timer.currentStepNum(), outputDir_);
outputWellStateMatlab(wellState, timer.currentStepNum(), outputDir_);
}
protected:
const Grid& grid_;
};
/// Extra data to read/write for OPM restarting
struct ExtraData
{
double suggested_step = -1.0;
};
/** \brief Wrapper class for VTK, Matlab, and ECL output. */
class BlackoilOutputWriter
{
2016-01-05 05:39:02 -06:00
public:
// constructor creating different sub writers
template <class Grid>
BlackoilOutputWriter(const Grid& grid,
const ParameterGroup& param,
const Opm::EclipseState& eclipseState,
2017-10-29 15:06:19 -05:00
const Opm::Schedule& schedule,
const Opm::SummaryConfig& summaryConfig,
std::unique_ptr<EclipseIO>&& eclIO,
const Opm::PhaseUsage &phaseUsage);
/** \copydoc Opm::OutputWriter::writeInit */
void writeInit(const data::Solution& simProps, const NNC& nnc);
/*!
* \brief Write a blackoil reservoir state to disk for later inspection with
* visualization tools like ResInsight. This function will extract the
* requested output cell properties specified by the RPTRST keyword
* and write these to file.
*/
template<class Model>
void writeTimeStep(const SimulatorTimerInterface& timer,
const SimulationDataContainer& reservoirState,
const Opm::WellStateFullyImplicitBlackoil& wellState,
const Model& physicalModel,
2017-06-06 14:35:05 -05:00
const bool substep = false,
const double nextstep = -1.0,
const SimulatorReport& simulatorReport = SimulatorReport());
/*!
* \brief Write a blackoil reservoir state to disk for later inspection with
* visualization tools like ResInsight. This function will write all
* CellData in simProps to the file as well as the extraRestartData.
*/
void writeTimeStepWithCellProperties(
const SimulatorTimerInterface& timer,
const SimulationDataContainer& reservoirState,
const data::Solution& cellData,
const Opm::WellStateFullyImplicitBlackoil& wellState,
const std::map<std::string, double>& miscSummaryData,
const std::map<std::string, std::vector<double>>& extraRestartData,
bool substep = false);
/*!
* \brief Write a blackoil reservoir state to disk for later inspection with
* visualization tools like ResInsight. This function will not write
* any cell properties (e.g., those requested by RPTRST keyword)
*/
void writeTimeStepWithoutCellProperties(
const SimulatorTimerInterface& timer,
const SimulationDataContainer& reservoirState,
const Opm::WellStateFullyImplicitBlackoil& wellState,
const std::map<std::string, double>& miscSummaryData,
const std::map<std::string, std::vector<double>>& extraRestartData,
bool substep = false);
/*!
* \brief Write a blackoil reservoir state to disk for later inspection with
* visualization tools like ResInsight. This is the function which does
* the actual write to file.
*/
void writeTimeStepSerial(const SimulatorTimerInterface& timer,
const SimulationDataContainer& reservoirState,
const Opm::WellStateFullyImplicitBlackoil& wellState,
const data::Solution& simProps,
const std::map<std::string, double>& miscSummaryData,
const std::map<std::string, std::vector<double>>& extraRestartData,
bool substep );
/** \brief return output directory */
const std::string& outputDirectory() const { return outputDir_; }
/** \brief return true if output is enabled */
bool output () const { return output_; }
/** \brief Whether this process does write to disk */
bool isIORank () const
{
2016-10-17 06:39:06 -05:00
return parallelOutput_->isIORank();
}
template <class Grid, class WellState>
void initFromRestartFile(const PhaseUsage& phaseUsage,
2016-01-05 05:39:02 -06:00
const Grid& grid,
SimulationDataContainer& simulatorstate,
WellState& wellstate,
ExtraData& extra);
2016-01-05 05:39:02 -06:00
bool isRestart() const;
bool requireFIPNUM() const;
protected:
const bool output_;
std::unique_ptr< ParallelDebugOutputInterface > parallelOutput_;
// Parameters for output.
const std::string outputDir_;
const bool restart_double_si_;
Opm::PhaseUsage phaseUsage_;
std::unique_ptr< BlackoilSubWriter > vtkWriter_;
std::unique_ptr< BlackoilSubWriter > matlabWriter_;
std::unique_ptr< EclipseIO > eclIO_;
const EclipseState& eclipseState_;
2017-10-29 15:06:19 -05:00
const Schedule& schedule_;
const SummaryConfig& summaryConfig_;
std::unique_ptr< ThreadHandle > asyncOutput_;
const int* globalCellIdxMap_;
};
//////////////////////////////////////////////////////////////
//
// Implementation
//
//////////////////////////////////////////////////////////////
template <class Grid>
inline
BlackoilOutputWriter::
BlackoilOutputWriter(const Grid& grid,
const ParameterGroup& param,
const Opm::EclipseState& eclipseState,
2017-10-29 15:06:19 -05:00
const Opm::Schedule& schedule,
const Opm::SummaryConfig& summaryConfig,
std::unique_ptr<EclipseIO>&& eclIO,
const Opm::PhaseUsage &phaseUsage)
2017-06-20 08:49:13 -05:00
: output_( [ &param ] () -> bool {
// If output parameter is true or all, then we do output
const std::string outputString = param.getDefault("output", std::string("all"));
return ( outputString == "all" || outputString == "true" );
}()
),
2017-10-29 15:06:19 -05:00
parallelOutput_( output_ ? new ParallelDebugOutput< Grid >( grid, eclipseState, schedule, phaseUsage.num_phases, phaseUsage ) : 0 ),
outputDir_( eclipseState.getIOConfig().getOutputDir() ),
restart_double_si_( output_ ? param.getDefault("restart_double_si", false) : false ),
phaseUsage_( phaseUsage ),
eclipseState_(eclipseState),
2017-10-29 15:06:19 -05:00
schedule_(schedule),
summaryConfig_(summaryConfig),
asyncOutput_(),
globalCellIdxMap_(Opm::UgGridHelpers::globalCell(grid))
{
// For output.
if ( output_ )
{
if ( param.getDefault("output_vtk",false) )
{
vtkWriter_
.reset(new BlackoilVTKWriter< Grid >( grid, outputDir_ ));
}
auto output_matlab = param.getDefault("output_matlab", false );
if ( parallelOutput_->isParallel() && output_matlab )
{
Opm::OpmLog::warning("Parallel Output Config",
"Velocity output for matlab is broken in parallel.");
}
if( parallelOutput_->isIORank() ) {
if ( output_matlab )
{
matlabWriter_
.reset(new BlackoilMatlabWriter< Grid >( grid, outputDir_ ));
}
eclIO_ = std::move(eclIO);
// Ensure that output dir exists
ensureDirectoryExists(outputDir_);
}
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
#if HAVE_PTHREAD
const bool asyncOutputDefault = true;
#else
const bool asyncOutputDefault = false;
#endif
if( param.getDefault("async_output", asyncOutputDefault ) )
{
const bool isIORank = parallelOutput_ ? parallelOutput_->isIORank() : true;
#if HAVE_PTHREAD
asyncOutput_.reset( new ThreadHandle( isIORank ) );
#else
OPM_THROW(std::runtime_error,"Pthreads were not found, cannot enable async_output");
#endif
}
}
}
2016-01-05 05:39:02 -06:00
2017-02-23 03:21:45 -06:00
template <class Grid, class WellState>
2016-01-05 05:39:02 -06:00
inline void
BlackoilOutputWriter::
initFromRestartFile( const PhaseUsage& phaseUsage,
2016-01-05 05:39:02 -06:00
const Grid& grid,
SimulationDataContainer& simulatorstate,
WellState& wellstate,
ExtraData& extra )
2016-01-05 05:39:02 -06:00
{
std::map<std::string, RestartKey> solution_keys {{"PRESSURE" , RestartKey(UnitSystem::measure::pressure)},
{"SWAT" , RestartKey(UnitSystem::measure::identity)},
{"SGAS" , RestartKey(UnitSystem::measure::identity)},
{"TEMP" , RestartKey(UnitSystem::measure::temperature)},
{"RS" , RestartKey(UnitSystem::measure::gas_oil_ratio)},
{"RV" , RestartKey(UnitSystem::measure::oil_gas_ratio)},
{"SOMAX", {UnitSystem::measure::identity, false}},
{"PCSWM_OW", {UnitSystem::measure::identity, false}},
{"KRNSW_OW", {UnitSystem::measure::identity, false}},
{"PCSWM_GO", {UnitSystem::measure::identity, false}},
{"KRNSW_GO", {UnitSystem::measure::identity, false}}};
std::map<std::string, bool> extra_keys {
{"OPMEXTRA" , false}
};
if (restart_double_si_) {
// Avoid any unit conversions, treat restart input as SI units.
for (auto& elem : solution_keys) {
elem.second = RestartKey(UnitSystem::measure::identity);
}
}
// gives a dummy dynamic_list_econ_limited
DynamicListEconLimited dummy_list_econ_limited;
2016-01-05 05:39:02 -06:00
WellsManager wellsmanager(eclipseState_,
2017-10-29 15:06:19 -05:00
schedule_,
eclipseState_.getInitConfig().getRestartStep(),
2016-01-05 05:39:02 -06:00
Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::dimensions(grid),
Opm::UgGridHelpers::cell2Faces(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
dummy_list_econ_limited
// We need to pass the optionaly arguments
// as we get the following error otherwise
// with c++ (Debian 4.9.2-10) 4.9.2 and -std=c++11
// converting to const std::unordered_set<std::basic_string<char> > from initializer list would use explicit constructo
, false,
std::unordered_set<std::string>());
2016-01-05 05:39:02 -06:00
const Wells* wells = wellsmanager.c_wells();
wellstate.resize(wells, simulatorstate, phaseUsage ); //Resize for restart step
auto restart_values = eclIO_->loadRestart(solution_keys, extra_keys);
solutionToSim( restart_values.solution, restart_values.extra, phaseUsage, simulatorstate );
wellsToState( restart_values.wells, phaseUsage, wellstate );
const auto opmextra_iter = restart_values.extra.find("OPMEXTRA");
if (opmextra_iter != restart_values.extra.end()) {
std::vector<double> opmextra = opmextra_iter->second;
assert(opmextra.size() == 1);
extra.suggested_step = opmextra[0];
} else {
OpmLog::warning("Restart data is missing OPMEXTRA field, restart run may deviate from original run.");
extra.suggested_step = -1.0;
}
2016-01-05 05:39:02 -06:00
}
namespace detail {
template <class V>
void addToSimData( SimulationDataContainer& simData,
const std::string& name,
const V& vec )
{
2017-04-19 02:58:54 -05:00
if (vec.size() == 0) {
return;
}
typedef std::vector< double > OutputVectorType;
// get data map
auto& dataMap = simData.cellData();
// insert name,vector into data map
dataMap.insert( std::make_pair( name, OutputVectorType( vec.data(), vec.data() + vec.size() ) ) );
}
template <class Scalar>
void addToSimData( SimulationDataContainer& simData,
const std::string& name,
const AutoDiffBlock<Scalar>& adb )
{
// forward value of ADB to output
addToSimData( simData, name, adb.value() );
}
// this method basically converts all Eigen vectors to std::vectors
// stored in a SimulationDataContainer
template <class SimulatorData>
SimulationDataContainer
convertToSimulationDataContainer( const SimulatorData& sd,
const SimulationDataContainer& localState,
const Opm::PhaseUsage& phaseUsage )
{
// copy local state and then add missing data
SimulationDataContainer simData( localState );
//Get shorthands for water, oil, gas
const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua];
const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid];
const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour];
const int aqua_idx = phaseUsage.phase_pos[Opm::PhaseUsage::Aqua];
const int liquid_idx = phaseUsage.phase_pos[Opm::PhaseUsage::Liquid];
const int vapour_idx = phaseUsage.phase_pos[Opm::PhaseUsage::Vapour];
// WATER
if( aqua_active ) {
addToSimData( simData, "1OVERBW", sd.rq[aqua_idx].b );
addToSimData( simData, "WAT_DEN", sd.rq[aqua_idx].rho );
addToSimData( simData, "WAT_VISC", sd.rq[aqua_idx].mu );
addToSimData( simData, "WATKR", sd.rq[aqua_idx].kr );
}
// OIL
if( liquid_active ) {
addToSimData( simData, "1OVERBO", sd.rq[liquid_idx].b );
addToSimData( simData, "OIL_DEN", sd.rq[liquid_idx].rho );
addToSimData( simData, "OIL_VISC", sd.rq[liquid_idx].mu );
addToSimData( simData, "OILKR", sd.rq[liquid_idx].kr );
}
// GAS
if( vapour_active ) {
addToSimData( simData, "1OVERBG", sd.rq[vapour_idx].b );
addToSimData( simData, "GAS_DEN", sd.rq[vapour_idx].rho );
addToSimData( simData, "GAS_VISC", sd.rq[vapour_idx].mu );
addToSimData( simData, "GASKR", sd.rq[vapour_idx].kr );
}
// RS and RV
addToSimData( simData, "RSSAT", sd.rsSat );
addToSimData( simData, "RVSAT", sd.rvSat );
2017-03-15 07:51:51 -05:00
addToSimData( simData, "SOMAX", sd.soMax );
addToSimData( simData, "PBUB", sd.Pb );
addToSimData( simData, "PDEW", sd.Pd );
addToSimData( simData, "PCSWMDC_OW", sd.pcswmdc_ow );
addToSimData( simData, "KRNSWMDC_OW", sd.krnswdc_ow );
addToSimData( simData, "PCSWMDC_GO", sd.pcswmdc_go );
addToSimData( simData, "KRNSWMDC_GO", sd.krnswdc_go );
2017-03-15 07:51:51 -05:00
return simData;
2016-09-26 07:17:52 -05:00
}
// in case the data is already in a SimulationDataContainer no
// conversion is needed
inline
SimulationDataContainer&&
convertToSimulationDataContainer( SimulationDataContainer&& sd,
const SimulationDataContainer& ,
const Opm::PhaseUsage& )
{
return std::move( sd );
}
2016-09-26 07:55:03 -05:00
2016-09-26 07:17:52 -05:00
/**
2016-09-26 07:55:03 -05:00
* Returns the data requested in the restartConfig
* NOTE: Since this function steals data from the SimulationDataContainer (std::move),
* the variable sd becomes "invalid" after calling this function.
2016-09-26 07:17:52 -05:00
*/
template<class Model>
void getRestartData(data::Solution& output,
SimulationDataContainer&& sd,
const Opm::PhaseUsage& /* phaseUsage */,
const Model& /* physicalModel */,
const RestartConfig& restartConfig,
const int reportStepNum,
const bool log)
{
2016-09-26 07:17:52 -05:00
//Get the value of each of the keys for the restart keywords
std::map<std::string, int> rstKeywords = restartConfig.getRestartKeywords(reportStepNum);
for (auto& keyValue : rstKeywords) {
keyValue.second = restartConfig.getKeyword(keyValue.first, reportStepNum);
}
const bool aqua_active = sd.hasCellData("1OVERBW");
const bool liquid_active = sd.hasCellData("1OVERBO");
const bool vapour_active = sd.hasCellData("1OVERBG");
assert( aqua_active == (sd.hasCellData("WAT_DEN") &&
sd.hasCellData("WAT_VISC") &&
sd.hasCellData("WATKR")
)
);
assert( liquid_active == (sd.hasCellData("OIL_DEN") &&
sd.hasCellData("OIL_VISC") &&
sd.hasCellData("OILKR")
)
);
assert( vapour_active == (sd.hasCellData("GAS_DEN") &&
sd.hasCellData("GAS_VISC") &&
sd.hasCellData("GASKR")
)
);
/**
* Formation volume factors for water, oil, gas
*/
2016-09-26 07:17:52 -05:00
if (aqua_active && rstKeywords["BW"] > 0) {
rstKeywords["BW"] = 0;
output.insert("1OVERBW",
Opm::UnitSystem::measure::water_inverse_formation_volume_factor,
std::move( sd.getCellData("1OVERBW") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
2016-09-26 07:17:52 -05:00
if (liquid_active && rstKeywords["BO"] > 0) {
rstKeywords["BO"] = 0;
output.insert("1OVERBO",
Opm::UnitSystem::measure::oil_inverse_formation_volume_factor,
std::move( sd.getCellData("1OVERBO") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
2016-09-26 07:17:52 -05:00
if (vapour_active && rstKeywords["BG"] > 0) {
rstKeywords["BG"] = 0;
output.insert("1OVERBG",
Opm::UnitSystem::measure::gas_inverse_formation_volume_factor,
std::move( sd.getCellData("1OVERBG") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
/**
* Densities for water, oil gas
*/
2016-09-26 07:17:52 -05:00
if (rstKeywords["DEN"] > 0) {
rstKeywords["DEN"] = 0;
if (aqua_active) {
output.insert("WAT_DEN",
Opm::UnitSystem::measure::density,
std::move( sd.getCellData("WAT_DEN") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
if (liquid_active) {
output.insert("OIL_DEN",
Opm::UnitSystem::measure::density,
std::move( sd.getCellData("OIL_DEN") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
if (vapour_active) {
output.insert("GAS_DEN",
Opm::UnitSystem::measure::density,
std::move( sd.getCellData("GAS_DEN") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
}
/**
* Viscosities for water, oil gas
*/
{
const bool has_vwat = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
const bool has_voil = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
const bool has_vgas = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
2016-09-26 07:17:52 -05:00
rstKeywords["VISC"] = 0;
if (aqua_active && has_vwat) {
output.insert("WAT_VISC",
Opm::UnitSystem::measure::viscosity,
std::move( sd.getCellData("WAT_VISC") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
rstKeywords["VWAT"] = 0;
}
if (liquid_active && has_voil) {
output.insert("OIL_VISC",
Opm::UnitSystem::measure::viscosity,
std::move( sd.getCellData("OIL_VISC") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
rstKeywords["VOIL"] = 0;
}
if (vapour_active && has_vgas) {
output.insert("GAS_VISC",
Opm::UnitSystem::measure::viscosity,
std::move( sd.getCellData("GAS_VISC") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
rstKeywords["VGAS"] = 0;
}
}
/**
* Relative permeabilities for water, oil, gas
*/
2016-09-26 07:17:52 -05:00
if (aqua_active && rstKeywords["KRW"] > 0) {
auto& krWater = sd.getCellData("WATKR");
if (krWater.size() > 0) {
2016-09-26 07:17:52 -05:00
rstKeywords["KRW"] = 0;
output.insert("WATKR", // WAT_KR ???
Opm::UnitSystem::measure::identity,
std::move( krWater ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
else {
if ( log )
{
Opm::OpmLog::warning("Empty:WATKR",
"Not emitting empty Water Rel-Perm");
}
}
}
2016-09-26 07:17:52 -05:00
if (liquid_active && rstKeywords["KRO"] > 0) {
auto& krOil = sd.getCellData("OILKR");
if (krOil.size() > 0) {
2016-09-26 07:17:52 -05:00
rstKeywords["KRO"] = 0;
output.insert("OILKR",
Opm::UnitSystem::measure::identity,
std::move( krOil ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
else {
if ( log )
{
Opm::OpmLog::warning("Empty:OILKR",
"Not emitting empty Oil Rel-Perm");
}
}
}
2016-09-26 07:17:52 -05:00
if (vapour_active && rstKeywords["KRG"] > 0) {
auto& krGas = sd.getCellData("GASKR");
if (krGas.size() > 0) {
2016-09-26 07:17:52 -05:00
rstKeywords["KRG"] = 0;
output.insert("GASKR",
Opm::UnitSystem::measure::identity,
std::move( krGas ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
else {
if ( log )
{
Opm::OpmLog::warning("Empty:GASKR",
"Not emitting empty Gas Rel-Perm");
}
}
}
/**
* Vaporized and dissolved gas/oil ratio
*/
2016-09-26 07:17:52 -05:00
if (vapour_active && liquid_active && rstKeywords["RSSAT"] > 0) {
rstKeywords["RSSAT"] = 0;
output.insert("RSSAT",
Opm::UnitSystem::measure::gas_oil_ratio,
std::move( sd.getCellData("RSSAT") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
}
2016-09-26 07:17:52 -05:00
if (vapour_active && liquid_active && rstKeywords["RVSAT"] > 0) {
rstKeywords["RVSAT"] = 0;
output.insert("RVSAT",
Opm::UnitSystem::measure::oil_gas_ratio,
std::move( sd.getCellData("RVSAT") ),
2017-02-15 07:47:24 -06:00
data::TargetType::RESTART_AUXILIARY);
2016-09-02 07:15:10 -05:00
}
2016-09-02 07:15:10 -05:00
/**
* Bubble point and dew point pressures
*/
2017-02-27 03:28:31 -06:00
if (vapour_active && liquid_active && rstKeywords["PBPD"] > 0) {
2016-09-26 07:17:52 -05:00
rstKeywords["PBPD"] = 0;
if (sd.hasCellData("PBUB")) {
output.insert("PBUB",
Opm::UnitSystem::measure::pressure,
std::move( sd.getCellData("PBUB") ),
data::TargetType::RESTART_AUXILIARY);
}
else if (log) {
Opm::OpmLog::warning("Bubble point pressure unavailable", "Output of bubble point pressure requested but not available in this simulator. Ignoring.");
}
if (sd.hasCellData("PDEW")) {
output.insert("PDEW",
Opm::UnitSystem::measure::pressure,
std::move( sd.getCellData("PDEW") ),
data::TargetType::RESTART_AUXILIARY);
}
else if (log) {
Opm::OpmLog::warning("Dew point pressure unavailable", "Output of dew point pressure requested but not available in this simulator. Ignoring.");
}
}
if (sd.hasCellData("SOMAX")) {
output.insert("SOMAX",
Opm::UnitSystem::measure::identity,
std::move( sd.getCellData("SOMAX") ),
data::TargetType::RESTART_AUXILIARY);
}
if (sd.hasCellData("PCSWMDC_OW")) {
output.insert("PCSWM_OW", //FIXME: Eight-long variable name
Opm::UnitSystem::measure::identity,
std::move( sd.getCellData("PCSWMDC_OW") ),
data::TargetType::RESTART_AUXILIARY);
}
if (sd.hasCellData("KRNSWMDC_OW")) {
output.insert("KRNSW_OW",
Opm::UnitSystem::measure::identity,
std::move( sd.getCellData("KRNSWMDC_OW") ),
data::TargetType::RESTART_AUXILIARY);
}
if (sd.hasCellData("PCSWMDC_GO")) {
output.insert("PCSWM_GO", //FIXME: Eight-long variable name
Opm::UnitSystem::measure::identity,
std::move( sd.getCellData("PCSWMDC_GO") ),
data::TargetType::RESTART_AUXILIARY);
}
if (sd.hasCellData("KRNSWMDC_GO")) {
output.insert("KRNSW_GO",
Opm::UnitSystem::measure::identity,
std::move( sd.getCellData("KRNSWMDC_GO") ),
data::TargetType::RESTART_AUXILIARY);
}
//Warn for any unhandled keyword
2016-09-26 07:17:52 -05:00
if (log) {
for (auto& keyValue : rstKeywords) {
if (keyValue.second > 0) {
std::string logstring = "Keyword '";
logstring.append(keyValue.first);
logstring.append("' is unhandled for output to file.");
Opm::OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
2016-09-26 07:55:03 -05:00
}
2016-09-26 07:17:52 -05:00
2016-09-26 07:55:03 -05:00
/**
* Checks if the summaryConfig has a keyword with the standardized field, region, or block prefixes.
*/
inline bool hasFRBKeyword(const SummaryConfig& summaryConfig, const std::string keyword) {
std::string field_kw = "F" + keyword;
std::string region_kw = "R" + keyword;
std::string block_kw = "B" + keyword;
return summaryConfig.hasKeyword(field_kw)
|| summaryConfig.hasKeyword(region_kw)
|| summaryConfig.hasKeyword(block_kw);
}
/**
* Returns the data as asked for in the summaryConfig
*/
template<class Model>
void getSummaryData(data::Solution& output,
const Opm::PhaseUsage& phaseUsage,
const Model& physicalModel,
const SummaryConfig& summaryConfig) {
2016-09-26 07:55:03 -05:00
typedef typename Model::FIPDataType FIPDataType;
typedef typename FIPDataType::VectorType VectorType;
2016-09-26 07:55:03 -05:00
FIPDataType fd = physicalModel.getFIPData();
2016-09-26 07:55:03 -05:00
//Get shorthands for water, oil, gas
const int aqua_active = phaseUsage.phase_used[Opm::PhaseUsage::Aqua];
const int liquid_active = phaseUsage.phase_used[Opm::PhaseUsage::Liquid];
const int vapour_active = phaseUsage.phase_used[Opm::PhaseUsage::Vapour];
2016-09-26 07:17:52 -05:00
/**
* Now process all of the summary config files
*/
// Water in place
if (aqua_active && hasFRBKeyword(summaryConfig, "WIP")) {
output.insert("WIP",
Opm::UnitSystem::measure::volume,
std::move( fd.fip[ FIPDataType::FIP_AQUA ] ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
if (liquid_active) {
const VectorType& oipl = fd.fip[FIPDataType::FIP_LIQUID];
VectorType oip ( oipl );
const size_t size = oip.size();
const VectorType& oipg = vapour_active ? fd.fip[FIPDataType::FIP_VAPORIZED_OIL] : VectorType(size, 0.0);
if( vapour_active )
{
// oip = oipl + oipg
for( size_t i=0; i<size; ++ i ) {
oip[ i ] += oipg[ i ];
}
}
2016-09-26 07:17:52 -05:00
//Oil in place (liquid phase only)
if (hasFRBKeyword(summaryConfig, "OIPL")) {
output.insert("OIPL",
Opm::UnitSystem::measure::volume,
std::move( oipl ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
//Oil in place (gas phase only)
if (hasFRBKeyword(summaryConfig, "OIPG")) {
output.insert("OIPG",
Opm::UnitSystem::measure::volume,
std::move( oipg ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
// Oil in place (in liquid and gas phases)
if (hasFRBKeyword(summaryConfig, "OIP") || hasFRBKeyword(summaryConfig, "OE")) {
output.insert("OIP",
Opm::UnitSystem::measure::volume,
std::move( oip ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
}
if (vapour_active) {
const VectorType& gipg = fd.fip[ FIPDataType::FIP_VAPOUR];
VectorType gip( gipg );
const size_t size = gip.size();
const VectorType& gipl = liquid_active ? fd.fip[ FIPDataType::FIP_DISSOLVED_GAS ] : VectorType(size,0.0);
if( liquid_active )
{
// gip = gipg + gipl
for( size_t i=0; i<size; ++ i ) {
gip[ i ] += gipl[ i ];
}
}
2016-09-26 07:17:52 -05:00
// Gas in place (gas phase only)
if (hasFRBKeyword(summaryConfig, "GIPG")) {
output.insert("GIPG",
Opm::UnitSystem::measure::volume,
std::move( gipg ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
2016-09-26 07:17:52 -05:00
// Gas in place (liquid phase only)
if (hasFRBKeyword(summaryConfig, "GIPL")) {
output.insert("GIPL",
Opm::UnitSystem::measure::volume,
std::move( gipl ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
// Gas in place (in both liquid and gas phases)
if (hasFRBKeyword(summaryConfig, "GIP")) {
output.insert("GIP",
Opm::UnitSystem::measure::volume,
std::move( gip ),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
}
// Cell pore volume in reservoir conditions
if (hasFRBKeyword(summaryConfig, "RPV")) {
output.insert("RPV",
Opm::UnitSystem::measure::volume,
std::move( fd.fip[FIPDataType::FIP_PV]),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
// Pressure averaged value (hydrocarbon pore volume weighted)
if (summaryConfig.hasKeyword("FPRH") || summaryConfig.hasKeyword("RPRH")) {
output.insert("PRH",
Opm::UnitSystem::measure::pressure,
std::move(fd.fip[FIPDataType::FIP_WEIGHTED_PRESSURE]),
data::TargetType::SUMMARY );
2016-09-26 07:17:52 -05:00
}
}
}
template<class Model>
inline void
BlackoilOutputWriter::
writeTimeStep(const SimulatorTimerInterface& timer,
const SimulationDataContainer& localState,
const WellStateFullyImplicitBlackoil& localWellState,
const Model& physicalModel,
2017-06-06 14:35:05 -05:00
const bool substep,
const double nextstep,
const SimulatorReport& simulatorReport)
{
data::Solution localCellData{};
const RestartConfig& restartConfig = eclipseState_.getRestartConfig();
const int reportStepNum = timer.reportStepNum();
bool logMessages = output_ && parallelOutput_->isIORank();
std::map<std::string, std::vector<double>> extraRestartData;
std::map<std::string, double> miscSummaryData;
if( output_ )
{
{
// get all data that need to be included in output from the model
// for flow_legacy and polymer this is a struct holding the data
// while for flow_ebos a SimulationDataContainer is returned
// this is addressed in the above specialized methods
SimulationDataContainer sd =
detail::convertToSimulationDataContainer( physicalModel.getSimulatorData(localState), localState, phaseUsage_ );
localCellData = simToSolution( sd, restart_double_si_, phaseUsage_); // Get "normal" data (SWAT, PRESSURE, ...);
detail::getRestartData( localCellData, std::move(sd), phaseUsage_, physicalModel,
restartConfig, reportStepNum, logMessages );
// sd will be invalid after getRestartData has been called
}
2017-10-29 15:06:19 -05:00
detail::getSummaryData( localCellData, phaseUsage_, physicalModel, summaryConfig_ );
assert(!localCellData.empty());
// Add suggested next timestep to extra data.
extraRestartData["OPMEXTRA"] = std::vector<double>(1, nextstep);
2017-06-06 14:35:05 -05:00
// Add TCPU if simulatorReport is not defaulted.
const double totalSolverTime = simulatorReport.solver_time;
if (totalSolverTime != 0.0) {
miscSummaryData["TCPU"] = totalSolverTime;
}
}
writeTimeStepWithCellProperties(timer, localState, localCellData, physicalModel.wellModel().wellState(localWellState), miscSummaryData, extraRestartData, substep);
}
}
#endif