2013-09-23 11:56:30 -05:00
|
|
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
|
|
/*****************************************************************************
|
|
|
|
* Copyright (C) 2012-2013 by Andreas Lauser *
|
|
|
|
* *
|
|
|
|
* This program is free software: you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation, either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
* This program is distributed in the hope that it will be useful, *
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
|
|
* GNU General Public License for more details. *
|
|
|
|
* *
|
|
|
|
* You should have received a copy of the GNU General Public License *
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
|
|
*****************************************************************************/
|
|
|
|
/*!
|
|
|
|
* \file
|
|
|
|
*
|
|
|
|
* \copydoc Ewoms::FractureProblem
|
|
|
|
*/
|
|
|
|
#ifndef EWOMS_FRACTURE_PROBLEM_HH
|
|
|
|
#define EWOMS_FRACTURE_PROBLEM_HH
|
|
|
|
|
|
|
|
#include <ewoms/parallel/mpihelper.hh>
|
|
|
|
#include <dune/grid/alugrid.hh>
|
|
|
|
|
2013-11-06 07:50:01 -06:00
|
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
|
2013-09-23 11:56:30 -05:00
|
|
|
#include <opm/material/heatconduction/Somerton.hpp>
|
|
|
|
#include <opm/material/fluidsystems/2pImmiscibleFluidSystem.hpp>
|
|
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
|
|
#include <opm/material/components/Dnapl.hpp>
|
|
|
|
#include <ewoms/io/artgridcreator.hh>
|
|
|
|
|
|
|
|
#include <ewoms/models/discretefracture/discretefracturemodel.hh>
|
|
|
|
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <sstream>
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
namespace Ewoms {
|
|
|
|
template <class TypeTag>
|
|
|
|
class FractureProblem;
|
2013-09-23 13:25:58 -05:00
|
|
|
}
|
2013-09-23 11:56:30 -05:00
|
|
|
|
2013-09-23 13:25:58 -05:00
|
|
|
namespace Opm {
|
2013-09-23 11:56:30 -05:00
|
|
|
namespace Properties {
|
|
|
|
// Create a type tag for the problem
|
|
|
|
NEW_TYPE_TAG(FractureProblem, INHERITS_FROM(VcfvDiscreteFracture));
|
|
|
|
|
|
|
|
// Set the GridCreator property
|
|
|
|
SET_TYPE_PROP(FractureProblem, GridCreator, Ewoms::ArtGridCreator<TypeTag>);
|
|
|
|
|
|
|
|
// Set the grid type
|
|
|
|
SET_TYPE_PROP(FractureProblem,
|
|
|
|
Grid,
|
|
|
|
Dune::ALUGrid</*dim=*/2, /*dimWorld=*/2, Dune::simplex, Dune::nonconforming>);
|
|
|
|
|
|
|
|
// Set the problem property
|
|
|
|
SET_TYPE_PROP(FractureProblem, Problem, Ewoms::FractureProblem<TypeTag>);
|
|
|
|
|
|
|
|
// Set the wetting phase
|
|
|
|
SET_PROP(FractureProblem, WettingPhase)
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
|
|
|
|
public:
|
|
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Set the non-wetting phase
|
|
|
|
SET_PROP(FractureProblem, NonwettingPhase)
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
|
|
|
|
public:
|
|
|
|
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Set the material Law
|
|
|
|
SET_PROP(FractureProblem, MaterialLaw)
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
2013-11-06 07:50:01 -06:00
|
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
|
|
/*wettingPhaseIdx=*/FluidSystem::wPhaseIdx,
|
|
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nPhaseIdx> Traits;
|
|
|
|
|
|
|
|
// define the material law which is parameterized by effective
|
|
|
|
// saturations
|
|
|
|
typedef Opm::RegularizedBrooksCorey<Traits> EffectiveLaw;
|
|
|
|
//typedef RegularizedVanGenuchten<Traits> EffectiveLaw;
|
|
|
|
//typedef LinearMaterial<Traits> EffectiveLaw;
|
2013-09-23 11:56:30 -05:00
|
|
|
|
|
|
|
public:
|
2013-11-06 07:50:01 -06:00
|
|
|
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
|
2013-09-23 11:56:30 -05:00
|
|
|
};
|
|
|
|
|
|
|
|
// Enable the energy equation
|
|
|
|
SET_BOOL_PROP(FractureProblem, EnableEnergy, true);
|
|
|
|
|
|
|
|
// Set the heat conduction law
|
|
|
|
SET_PROP(FractureProblem, HeatConductionLaw)
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
|
|
|
|
public:
|
|
|
|
// define the material law parameterized by absolute saturations
|
|
|
|
typedef Opm::Somerton<FluidSystem, Scalar> type;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Disable gravity
|
|
|
|
SET_BOOL_PROP(FractureProblem, EnableGravity, false);
|
|
|
|
|
|
|
|
// For this problem, we use constraints to specify the left boundary
|
|
|
|
SET_BOOL_PROP(FractureProblem, EnableConstraints, true);
|
|
|
|
|
|
|
|
// Set the default value for the file name of the grid
|
|
|
|
SET_STRING_PROP(FractureProblem, GridFile, "grids/fracture.art");
|
|
|
|
|
|
|
|
// Set the default value for the end time
|
|
|
|
SET_SCALAR_PROP(FractureProblem, EndTime, 1e6);
|
|
|
|
|
|
|
|
// Set the default value for the initial time step size
|
|
|
|
SET_SCALAR_PROP(FractureProblem, InitialTimeStepSize, 100);
|
2013-11-04 07:17:32 -06:00
|
|
|
} // namespace Properties
|
|
|
|
} // namespace Opm
|
2013-09-23 11:56:30 -05:00
|
|
|
|
2013-09-23 13:25:58 -05:00
|
|
|
namespace Ewoms {
|
2013-09-23 11:56:30 -05:00
|
|
|
/*!
|
|
|
|
* \ingroup VcfvTestProblems
|
|
|
|
*
|
|
|
|
* \brief Two-phase problem which involves fractures
|
|
|
|
*
|
|
|
|
* The domain is initially completely saturated by the oil phase,
|
|
|
|
* except for the left side, which is fully water saturated. Since the
|
|
|
|
* capillary pressure in the fractures is lower than in the rock
|
|
|
|
* matrix and the material is hydrophilic, water infiltrates through
|
|
|
|
* the fractures and gradually pushes the oil out on the right side,
|
|
|
|
* where the pressure is kept constant.
|
|
|
|
*/
|
|
|
|
template <class TypeTag >
|
|
|
|
class FractureProblem
|
|
|
|
: public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
|
|
{
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
|
|
|
|
|
|
|
|
enum {
|
|
|
|
// phase indices
|
|
|
|
wPhaseIdx = MaterialLaw::wPhaseIdx,
|
|
|
|
nPhaseIdx = MaterialLaw::nPhaseIdx,
|
|
|
|
|
|
|
|
// number of phases
|
|
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
|
|
|
|
// Grid and world dimension
|
|
|
|
dim = GridView::dimension,
|
|
|
|
dimWorld = GridView::dimensionworld
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem> FluidState;
|
|
|
|
|
|
|
|
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
|
|
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
|
|
|
|
template<int dim>
|
|
|
|
struct FaceLayout
|
|
|
|
{
|
|
|
|
bool contains (Dune::GeometryType gt)
|
|
|
|
{ return gt.dim() == dim - 1; }
|
|
|
|
};
|
|
|
|
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, FaceLayout> FaceMapper;
|
|
|
|
|
|
|
|
typedef Ewoms::FractureMapper<TypeTag> FractureMapper;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/*!
|
|
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
|
|
*/
|
|
|
|
FractureProblem(TimeManager &timeManager)
|
|
|
|
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
|
|
|
|
{
|
|
|
|
eps_ = 3e-6;
|
|
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
|
|
|
2013-11-06 07:50:01 -06:00
|
|
|
matrixMaterialParams_.setResidualSaturation(wPhaseIdx, 0.0);
|
|
|
|
matrixMaterialParams_.setResidualSaturation(nPhaseIdx, 0.0);
|
|
|
|
fractureMaterialParams_.setResidualSaturation(wPhaseIdx, 0.0);
|
|
|
|
fractureMaterialParams_.setResidualSaturation(nPhaseIdx, 0.0);
|
2013-09-23 11:56:30 -05:00
|
|
|
|
|
|
|
#if 0 // linear
|
|
|
|
matrixMaterialParams_.setEntryPC(0.0);
|
|
|
|
matrixMaterialParams_.setMaxPC(2000.0);
|
|
|
|
fractureMaterialParams_.setEntryPC(0.0);
|
|
|
|
fractureMaterialParams_.setMaxPC(1000.0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 1 // Brooks-Corey
|
2013-11-06 07:50:01 -06:00
|
|
|
matrixMaterialParams_.setEntryPressure(2000);
|
2013-09-23 11:56:30 -05:00
|
|
|
matrixMaterialParams_.setLambda(2.0);
|
|
|
|
matrixMaterialParams_.setThresholdSw(1e-1);
|
2013-11-06 07:50:01 -06:00
|
|
|
fractureMaterialParams_.setEntryPressure(1000);
|
2013-09-23 11:56:30 -05:00
|
|
|
fractureMaterialParams_.setLambda(2.0);
|
|
|
|
fractureMaterialParams_.setThresholdSw(5e-2);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 0 // van Genuchten
|
|
|
|
matrixMaterialParams_.setVgAlpha(0.0037);
|
|
|
|
matrixMaterialParams_.setVgN(4.7);
|
|
|
|
fractureMaterialParams_.setVgAlpha(0.0025);
|
|
|
|
fractureMaterialParams_.setVgN(4.7);
|
|
|
|
#endif
|
|
|
|
|
2013-11-06 07:50:01 -06:00
|
|
|
matrixMaterialParams_.finalize();
|
|
|
|
fractureMaterialParams_.finalize();
|
|
|
|
|
2013-09-23 11:56:30 -05:00
|
|
|
matrixK_ = this->toDimMatrix_(1e-15); //m^2
|
|
|
|
fractureK_ = this->toDimMatrix_(1e5*1e-15); //m^2
|
|
|
|
|
|
|
|
matrixPorosity_ = 0.10;
|
|
|
|
fracturePorosity_ = 0.25;
|
|
|
|
fractureWidth_ = 1e-3; // [m]
|
|
|
|
|
|
|
|
// parameters for the somerton law of heat conduction
|
|
|
|
computeHeatCondParams_(heatCondParams_, matrixPorosity_);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \name Auxiliary methods
|
|
|
|
*/
|
|
|
|
//! \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvProblem::name
|
|
|
|
*/
|
|
|
|
std::string name() const
|
|
|
|
{
|
|
|
|
std::ostringstream oss;
|
|
|
|
oss << "fracture_" << this->model().name();
|
|
|
|
return oss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Called directly after the time integration.
|
|
|
|
*/
|
|
|
|
void postTimeStep()
|
|
|
|
{
|
|
|
|
// Calculate storage terms
|
|
|
|
EqVector storage;
|
|
|
|
this->model().globalStorage(storage);
|
|
|
|
|
|
|
|
// Process with rank 0 informs about the total masses of all
|
|
|
|
// components inside the domain
|
|
|
|
if (this->gridView().comm().rank() == 0) {
|
|
|
|
std::cout << "Mass in domain: " << storage << std::endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvMultiPhaseProblem::temperature
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar temperature(const Context &context,
|
|
|
|
int spaceIdx, int timeIdx) const
|
|
|
|
{ return temperature_; }
|
|
|
|
|
|
|
|
// \}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \name Soil parameters
|
|
|
|
*/
|
|
|
|
//! \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvMultiPhaseProblem::intrinsicPermeability
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return matrixK_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Intrinsic permeability of fractures.
|
|
|
|
*
|
|
|
|
* \copydoc Doxygen::contextParams
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const DimMatrix &fractureIntrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return fractureK_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvMultiPhaseProblem::porosity
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return matrixPorosity_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief The porosity inside the fractures.
|
|
|
|
*
|
|
|
|
* \copydoc Doxygen::contextParams
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar fracturePorosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return fracturePorosity_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvMultiPhaseProblem::materialLawParams
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const MaterialLawParams& materialLawParams(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return matrixMaterialParams_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief The parameters for the material law inside the fractures.
|
|
|
|
*
|
|
|
|
* \copydoc Doxygen::contextParams
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const MaterialLawParams& fractureMaterialLawParams(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return fractureMaterialParams_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Returns the object representating the fracture topology.
|
|
|
|
*/
|
|
|
|
const FractureMapper &fractureMapper() const
|
|
|
|
{ return GET_PROP_TYPE(TypeTag, GridCreator)::fractureMapper(); }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \brief Returns the width of the fracture.
|
|
|
|
*
|
|
|
|
* \todo This method should get one face index instead of two
|
|
|
|
* vertex indices. This probably requires a new context
|
|
|
|
* class, though.
|
|
|
|
*
|
|
|
|
* \param context The execution context.
|
|
|
|
* \param spaceIdx1 The local index of the edge's first edge.
|
|
|
|
* \param spaceIdx2 The local index of the edge's second edge.
|
|
|
|
* \param timeIdx The index used by the time discretization.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar fractureWidth(const Context &context, int spaceIdx1, int spaceIdx2, int timeIdx) const
|
|
|
|
{ return fractureWidth_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvMultiPhaseProblem::heatConductionParams
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
const HeatConductionLawParams&
|
|
|
|
heatConductionParams(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{ return heatCondParams_; }
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvMultiPhaseProblem::heatCapacitySolid
|
|
|
|
*
|
|
|
|
* In this case, we assume the rock-matrix to be granite.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
Scalar heatCapacitySolid(const Context &context, int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
return
|
|
|
|
790 // specific heat capacity of granite [J / (kg K)]
|
|
|
|
* 2700; // density of granite [kg/m^3]
|
|
|
|
}
|
|
|
|
|
|
|
|
// \}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \name Boundary conditions
|
|
|
|
*/
|
|
|
|
// \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvProblem::boundary
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void boundary(BoundaryRateVector &values,
|
|
|
|
const Context &context,
|
|
|
|
int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
|
|
|
|
if (onRightBoundary_(pos))
|
|
|
|
{
|
|
|
|
// on the right boundary, we impose a free-flow
|
|
|
|
// (i.e. Dirichlet) condition
|
|
|
|
FluidState fluidState;
|
|
|
|
fluidState.setTemperature(temperature_);
|
|
|
|
|
|
|
|
fluidState.setSaturation(wPhaseIdx, 0.0);
|
|
|
|
fluidState.setSaturation(nPhaseIdx, 1.0 - fluidState.saturation(wPhaseIdx));
|
|
|
|
|
|
|
|
fluidState.setPressure(wPhaseIdx, 1e5);
|
|
|
|
fluidState.setPressure(nPhaseIdx, fluidState.pressure(wPhaseIdx));
|
|
|
|
|
|
|
|
// set a free flow (i.e. Dirichlet) boundary
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fluidState);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
// for the upper, lower and left boundaries, use a no-flow
|
|
|
|
// condition (i.e. a Neumann 0 condition)
|
|
|
|
values.setNoFlow();
|
|
|
|
}
|
|
|
|
|
|
|
|
// \}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \name Volume terms
|
|
|
|
*/
|
|
|
|
// \{
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvProblem::constraints
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void constraints(Constraints &constraints,
|
|
|
|
const Context &context,
|
|
|
|
int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
|
|
|
|
if (!onLeftBoundary_(pos))
|
|
|
|
// only impose constraints adjacent to the left boundary
|
|
|
|
return;
|
|
|
|
|
|
|
|
int globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
|
|
if (!fractureMapper().isFractureVertex(globalIdx)) {
|
|
|
|
// do not impose constraints if the finite volume does
|
|
|
|
// not contain fractures.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if the current finite volume is on the left boundary
|
|
|
|
// and features a fracture, specify the fracture fluid
|
|
|
|
// state.
|
|
|
|
FluidState fractureFluidState;
|
|
|
|
fractureFluidState.setTemperature(temperature_ + 10);
|
|
|
|
|
|
|
|
fractureFluidState.setSaturation(wPhaseIdx, 1.0);
|
|
|
|
fractureFluidState.setSaturation(nPhaseIdx, 1.0 - fractureFluidState.saturation(wPhaseIdx));
|
|
|
|
|
|
|
|
Scalar pCFracture[numPhases];
|
|
|
|
MaterialLaw::capillaryPressures(pCFracture, fractureMaterialParams_, fractureFluidState);
|
|
|
|
|
|
|
|
fractureFluidState.setPressure(wPhaseIdx, /*pressure=*/1e5);
|
|
|
|
fractureFluidState.setPressure(nPhaseIdx, fractureFluidState.pressure(wPhaseIdx) + (pCFracture[nPhaseIdx] - pCFracture[wPhaseIdx]));
|
|
|
|
|
|
|
|
constraints.setAllConstraint();
|
|
|
|
constraints.assignNaiveFromFracture(fractureFluidState, matrixMaterialParams_);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvProblem::initial
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void initial(PrimaryVariables &values,
|
|
|
|
const Context &context,
|
|
|
|
int spaceIdx, int timeIdx) const
|
|
|
|
{
|
|
|
|
FluidState fluidState;
|
|
|
|
fluidState.setTemperature(temperature_);
|
|
|
|
fluidState.setPressure(FluidSystem::wPhaseIdx, /*pressure=*/1e5);
|
|
|
|
fluidState.setPressure(nPhaseIdx, fluidState.pressure(wPhaseIdx));
|
|
|
|
|
|
|
|
fluidState.setSaturation(wPhaseIdx, 0.0);
|
|
|
|
fluidState.setSaturation(nPhaseIdx, 1.0 - fluidState.saturation(wPhaseIdx));
|
|
|
|
|
|
|
|
values.assignNaive(fluidState);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* \copydoc VcfvProblem::source
|
|
|
|
*
|
|
|
|
* For this problem, the source term of all components is 0
|
|
|
|
* everywhere.
|
|
|
|
*/
|
|
|
|
template <class Context>
|
|
|
|
void source(RateVector &rate,
|
|
|
|
const Context &context,
|
|
|
|
int spaceIdx, int timeIdx) const
|
|
|
|
{ rate = Scalar(0.0); }
|
|
|
|
|
|
|
|
// \}
|
|
|
|
|
|
|
|
private:
|
|
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
|
|
{ return pos[0] < this->bboxMin()[0] + eps_; }
|
|
|
|
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
|
|
{ return pos[0] > this->bboxMax()[0] - eps_; }
|
|
|
|
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
|
|
{ return pos[1] < this->bboxMin()[1] + eps_; }
|
|
|
|
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
|
|
{ return pos[1] > this->bboxMax()[1] - eps_; }
|
|
|
|
|
|
|
|
void computeHeatCondParams_(HeatConductionLawParams ¶ms, Scalar poro)
|
|
|
|
{
|
|
|
|
Scalar lambdaGranite = 2.8; // [W / (K m)]
|
|
|
|
|
|
|
|
// create a Fluid state which has all phases present
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
|
|
fs.setTemperature(293.15);
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
|
|
fs.setPressure(phaseIdx, 1.0135e5);
|
|
|
|
}
|
|
|
|
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
|
|
paramCache.updateAll(fs);
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
|
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
|
|
fs.setDensity(phaseIdx, rho);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
|
|
Scalar lambdaSaturated;
|
|
|
|
if (FluidSystem::isLiquid(phaseIdx)) {
|
|
|
|
Scalar lambdaFluid =
|
|
|
|
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
|
|
|
|
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
|
|
|
|
|
|
|
|
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
|
|
|
|
}
|
|
|
|
|
|
|
|
Scalar lambdaVac = std::pow(lambdaGranite, (1-poro));
|
|
|
|
params.setVacuumLambda(lambdaVac);
|
|
|
|
}
|
|
|
|
|
|
|
|
DimMatrix matrixK_;
|
|
|
|
DimMatrix fractureK_;
|
|
|
|
|
|
|
|
Scalar matrixPorosity_;
|
|
|
|
Scalar fracturePorosity_;
|
|
|
|
|
|
|
|
Scalar fractureWidth_;
|
|
|
|
|
|
|
|
MaterialLawParams fractureMaterialParams_;
|
|
|
|
MaterialLawParams matrixMaterialParams_;
|
|
|
|
|
|
|
|
HeatConductionLawParams heatCondParams_;
|
|
|
|
|
|
|
|
Scalar temperature_;
|
|
|
|
Scalar eps_;
|
|
|
|
};
|
2013-11-04 07:17:32 -06:00
|
|
|
} // namespace Ewoms
|
2013-09-23 11:56:30 -05:00
|
|
|
|
|
|
|
#endif // EWOMS_FRACTURE_PROBLEM_HH
|