opm-simulators/tests/models/problems/fractureproblem.hh

580 lines
19 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* Copyright (C) 2012-2013 by Andreas Lauser *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \copydoc Ewoms::FractureProblem
*/
#ifndef EWOMS_FRACTURE_PROBLEM_HH
#define EWOMS_FRACTURE_PROBLEM_HH
#include <ewoms/parallel/mpihelper.hh>
#include <dune/grid/alugrid.hh>
2013-11-06 07:50:01 -06:00
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/heatconduction/Somerton.hpp>
#include <opm/material/fluidsystems/2pImmiscibleFluidSystem.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
#include <ewoms/io/artgridcreator.hh>
#include <ewoms/models/discretefracture/discretefracturemodel.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <iostream>
#include <sstream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class FractureProblem;
}
namespace Opm {
namespace Properties {
// Create a type tag for the problem
NEW_TYPE_TAG(FractureProblem, INHERITS_FROM(VcfvDiscreteFracture));
// Set the GridCreator property
SET_TYPE_PROP(FractureProblem, GridCreator, Ewoms::ArtGridCreator<TypeTag>);
// Set the grid type
SET_TYPE_PROP(FractureProblem,
Grid,
Dune::ALUGrid</*dim=*/2, /*dimWorld=*/2, Dune::simplex, Dune::nonconforming>);
// Set the problem property
SET_TYPE_PROP(FractureProblem, Problem, Ewoms::FractureProblem<TypeTag>);
// Set the wetting phase
SET_PROP(FractureProblem, WettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the non-wetting phase
SET_PROP(FractureProblem, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
};
// Set the material Law
SET_PROP(FractureProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
2013-11-06 07:50:01 -06:00
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nPhaseIdx> Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedBrooksCorey<Traits> EffectiveLaw;
//typedef RegularizedVanGenuchten<Traits> EffectiveLaw;
//typedef LinearMaterial<Traits> EffectiveLaw;
public:
2013-11-06 07:50:01 -06:00
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Enable the energy equation
SET_BOOL_PROP(FractureProblem, EnableEnergy, true);
// Set the heat conduction law
SET_PROP(FractureProblem, HeatConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::Somerton<FluidSystem, Scalar> type;
};
// Disable gravity
SET_BOOL_PROP(FractureProblem, EnableGravity, false);
// For this problem, we use constraints to specify the left boundary
SET_BOOL_PROP(FractureProblem, EnableConstraints, true);
// Set the default value for the file name of the grid
SET_STRING_PROP(FractureProblem, GridFile, "grids/fracture.art");
// Set the default value for the end time
SET_SCALAR_PROP(FractureProblem, EndTime, 1e6);
// Set the default value for the initial time step size
SET_SCALAR_PROP(FractureProblem, InitialTimeStepSize, 100);
} // namespace Properties
} // namespace Opm
namespace Ewoms {
/*!
* \ingroup VcfvTestProblems
*
* \brief Two-phase problem which involves fractures
*
* The domain is initially completely saturated by the oil phase,
* except for the left side, which is fully water saturated. Since the
* capillary pressure in the fractures is lower than in the rock
* matrix and the material is hydrophilic, water infiltrates through
* the fractures and gradually pushes the oil out on the right side,
* where the pressure is kept constant.
*/
template <class TypeTag >
class FractureProblem
: public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
enum {
// phase indices
wPhaseIdx = MaterialLaw::wPhaseIdx,
nPhaseIdx = MaterialLaw::nPhaseIdx,
// number of phases
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem> FluidState;
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
template<int dim>
struct FaceLayout
{
bool contains (Dune::GeometryType gt)
{ return gt.dim() == dim - 1; }
};
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, FaceLayout> FaceMapper;
typedef Ewoms::FractureMapper<TypeTag> FractureMapper;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
FractureProblem(TimeManager &timeManager)
: ParentType(timeManager, GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView())
{
eps_ = 3e-6;
temperature_ = 273.15 + 20; // -> 20°C
2013-11-06 07:50:01 -06:00
matrixMaterialParams_.setResidualSaturation(wPhaseIdx, 0.0);
matrixMaterialParams_.setResidualSaturation(nPhaseIdx, 0.0);
fractureMaterialParams_.setResidualSaturation(wPhaseIdx, 0.0);
fractureMaterialParams_.setResidualSaturation(nPhaseIdx, 0.0);
#if 0 // linear
matrixMaterialParams_.setEntryPC(0.0);
matrixMaterialParams_.setMaxPC(2000.0);
fractureMaterialParams_.setEntryPC(0.0);
fractureMaterialParams_.setMaxPC(1000.0);
#endif
#if 1 // Brooks-Corey
2013-11-06 07:50:01 -06:00
matrixMaterialParams_.setEntryPressure(2000);
matrixMaterialParams_.setLambda(2.0);
matrixMaterialParams_.setThresholdSw(1e-1);
2013-11-06 07:50:01 -06:00
fractureMaterialParams_.setEntryPressure(1000);
fractureMaterialParams_.setLambda(2.0);
fractureMaterialParams_.setThresholdSw(5e-2);
#endif
#if 0 // van Genuchten
matrixMaterialParams_.setVgAlpha(0.0037);
matrixMaterialParams_.setVgN(4.7);
fractureMaterialParams_.setVgAlpha(0.0025);
fractureMaterialParams_.setVgN(4.7);
#endif
2013-11-06 07:50:01 -06:00
matrixMaterialParams_.finalize();
fractureMaterialParams_.finalize();
matrixK_ = this->toDimMatrix_(1e-15); //m^2
fractureK_ = this->toDimMatrix_(1e5*1e-15); //m^2
matrixPorosity_ = 0.10;
fracturePorosity_ = 0.25;
fractureWidth_ = 1e-3; // [m]
// parameters for the somerton law of heat conduction
computeHeatCondParams_(heatCondParams_, matrixPorosity_);
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc VcfvProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "fracture_" << this->model().name();
return oss.str();
}
/*!
* \brief Called directly after the time integration.
*/
void postTimeStep()
{
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Process with rank 0 informs about the total masses of all
// components inside the domain
if (this->gridView().comm().rank() == 0) {
std::cout << "Mass in domain: " << storage << std::endl;
}
}
/*!
* \copydoc VcfvMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context,
int spaceIdx, int timeIdx) const
{ return temperature_; }
// \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc VcfvMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
{ return matrixK_; }
/*!
* \brief Intrinsic permeability of fractures.
*
* \copydoc Doxygen::contextParams
*/
template <class Context>
const DimMatrix &fractureIntrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
{ return fractureK_; }
/*!
* \copydoc VcfvMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{ return matrixPorosity_; }
/*!
* \brief The porosity inside the fractures.
*
* \copydoc Doxygen::contextParams
*/
template <class Context>
Scalar fracturePorosity(const Context &context, int spaceIdx, int timeIdx) const
{ return fracturePorosity_; }
/*!
* \copydoc VcfvMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context &context, int spaceIdx, int timeIdx) const
{ return matrixMaterialParams_; }
/*!
* \brief The parameters for the material law inside the fractures.
*
* \copydoc Doxygen::contextParams
*/
template <class Context>
const MaterialLawParams& fractureMaterialLawParams(const Context &context, int spaceIdx, int timeIdx) const
{ return fractureMaterialParams_; }
/*!
* \brief Returns the object representating the fracture topology.
*/
const FractureMapper &fractureMapper() const
{ return GET_PROP_TYPE(TypeTag, GridCreator)::fractureMapper(); }
/*!
* \brief Returns the width of the fracture.
*
* \todo This method should get one face index instead of two
* vertex indices. This probably requires a new context
* class, though.
*
* \param context The execution context.
* \param spaceIdx1 The local index of the edge's first edge.
* \param spaceIdx2 The local index of the edge's second edge.
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar fractureWidth(const Context &context, int spaceIdx1, int spaceIdx2, int timeIdx) const
{ return fractureWidth_; }
/*!
* \copydoc VcfvMultiPhaseProblem::heatConductionParams
*/
template <class Context>
const HeatConductionLawParams&
heatConductionParams(const Context &context, int spaceIdx, int timeIdx) const
{ return heatCondParams_; }
/*!
* \copydoc VcfvMultiPhaseProblem::heatCapacitySolid
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
Scalar heatCapacitySolid(const Context &context, int spaceIdx, int timeIdx) const
{
return
790 // specific heat capacity of granite [J / (kg K)]
* 2700; // density of granite [kg/m^3]
}
// \}
/*!
* \name Boundary conditions
*/
// \{
/*!
* \copydoc VcfvProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onRightBoundary_(pos))
{
// on the right boundary, we impose a free-flow
// (i.e. Dirichlet) condition
FluidState fluidState;
fluidState.setTemperature(temperature_);
fluidState.setSaturation(wPhaseIdx, 0.0);
fluidState.setSaturation(nPhaseIdx, 1.0 - fluidState.saturation(wPhaseIdx));
fluidState.setPressure(wPhaseIdx, 1e5);
fluidState.setPressure(nPhaseIdx, fluidState.pressure(wPhaseIdx));
// set a free flow (i.e. Dirichlet) boundary
values.setFreeFlow(context, spaceIdx, timeIdx, fluidState);
}
else
// for the upper, lower and left boundaries, use a no-flow
// condition (i.e. a Neumann 0 condition)
values.setNoFlow();
}
// \}
/*!
* \name Volume terms
*/
// \{
/*!
* \copydoc VcfvProblem::constraints
*/
template <class Context>
void constraints(Constraints &constraints,
const Context &context,
int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (!onLeftBoundary_(pos))
// only impose constraints adjacent to the left boundary
return;
int globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
if (!fractureMapper().isFractureVertex(globalIdx)) {
// do not impose constraints if the finite volume does
// not contain fractures.
return;
}
// if the current finite volume is on the left boundary
// and features a fracture, specify the fracture fluid
// state.
FluidState fractureFluidState;
fractureFluidState.setTemperature(temperature_ + 10);
fractureFluidState.setSaturation(wPhaseIdx, 1.0);
fractureFluidState.setSaturation(nPhaseIdx, 1.0 - fractureFluidState.saturation(wPhaseIdx));
Scalar pCFracture[numPhases];
MaterialLaw::capillaryPressures(pCFracture, fractureMaterialParams_, fractureFluidState);
fractureFluidState.setPressure(wPhaseIdx, /*pressure=*/1e5);
fractureFluidState.setPressure(nPhaseIdx, fractureFluidState.pressure(wPhaseIdx) + (pCFracture[nPhaseIdx] - pCFracture[wPhaseIdx]));
constraints.setAllConstraint();
constraints.assignNaiveFromFracture(fractureFluidState, matrixMaterialParams_);
}
/*!
* \copydoc VcfvProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values,
const Context &context,
int spaceIdx, int timeIdx) const
{
FluidState fluidState;
fluidState.setTemperature(temperature_);
fluidState.setPressure(FluidSystem::wPhaseIdx, /*pressure=*/1e5);
fluidState.setPressure(nPhaseIdx, fluidState.pressure(wPhaseIdx));
fluidState.setSaturation(wPhaseIdx, 0.0);
fluidState.setSaturation(nPhaseIdx, 1.0 - fluidState.saturation(wPhaseIdx));
values.assignNaive(fluidState);
}
/*!
* \copydoc VcfvProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate,
const Context &context,
int spaceIdx, int timeIdx) const
{ rate = Scalar(0.0); }
// \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->bboxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->bboxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->bboxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->bboxMax()[1] - eps_; }
void computeHeatCondParams_(HeatConductionLawParams &params, Scalar poro)
{
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::ParameterCache paramCache;
paramCache.updateAll(fs);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid =
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
}
Scalar lambdaVac = std::pow(lambdaGranite, (1-poro));
params.setVacuumLambda(lambdaVac);
}
DimMatrix matrixK_;
DimMatrix fractureK_;
Scalar matrixPorosity_;
Scalar fracturePorosity_;
Scalar fractureWidth_;
MaterialLawParams fractureMaterialParams_;
MaterialLawParams matrixMaterialParams_;
HeatConductionLawParams heatCondParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Ewoms
#endif // EWOMS_FRACTURE_PROBLEM_HH