opm-simulators/opm/autodiff/StandardWellsSolvent_impl.hpp

245 lines
10 KiB
C++
Raw Normal View History

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/StandardWellsSolvent.hpp>
namespace Opm
{
StandardWellsSolvent::StandardWellsSolvent(const Wells* wells_arg)
: Base(wells_arg)
, solvent_props_(nullptr)
, solvent_pos_(-1)
, has_solvent_(false)
{
}
void
StandardWellsSolvent::initSolvent(const SolventPropsAdFromDeck* solvent_props,
const int solvent_pos,
const bool has_solvent)
{
solvent_props_ = solvent_props;
solvent_pos_ = solvent_pos;
has_solvent_ = has_solvent;
}
template<class SolutionState, class WellState>
void
StandardWellsSolvent::
computePropertiesForWellConnectionPressures(const SolutionState& state,
const WellState& xw,
const BlackoilPropsAdInterface& fluid,
const std::vector<bool>& active,
const std::vector<PhasePresence>& pc,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf)
{
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nw = wells().number_of_wells;
// Compute the average pressure in each well block
const Vector perf_press = Eigen::Map<const V>(xw.perfPress().data(), nperf);
Vector avg_press = perf_press*0;
for (int w = 0; w < nw; ++w) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
const double p_above = perf == wells().well_connpos[w] ? state.bhp.value()[w] : perf_press[perf - 1];
const double p_avg = (perf_press[perf] + p_above)/2;
avg_press[perf] = p_avg;
}
}
const std::vector<int>& well_cells = wellOps().well_cells;
// Use cell values for the temperature as the wells don't knows its temperature yet.
const ADB perf_temp = subset(state.temperature, well_cells);
// Compute b, rsmax, rvmax values for perforations.
// Evaluate the properties using average well block pressures
// and cell values for rs, rv, phase condition and temperature.
const ADB avg_press_ad = ADB::constant(avg_press);
std::vector<PhasePresence> perf_cond(nperf);
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = pc[well_cells[perf]];
}
const PhaseUsage& pu = fluid.phaseUsage();
DataBlock b(nperf, pu.num_phases);
const Vector bw = fluid.bWat(avg_press_ad, perf_temp, well_cells).value();
if (pu.phase_used[BlackoilPhases::Aqua]) {
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw;
}
assert(active[Oil]);
assert(active[Gas]);
const ADB perf_rv = subset(state.rv, well_cells);
const ADB perf_rs = subset(state.rs, well_cells);
const Vector perf_so = subset(state.saturation[pu.phase_pos[Oil]].value(), well_cells);
if (pu.phase_used[BlackoilPhases::Liquid]) {
const Vector bo = fluid.bOil(avg_press_ad, perf_temp, perf_rs, perf_cond, well_cells).value();
//const V bo_eff = subset(rq_[pu.phase_pos[Oil] ].b , well_cells).value();
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo;
// const Vector rssat = fluidRsSat(avg_press, perf_so, well_cells);
const Vector rssat = fluid.rsSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rsmax_perf.assign(rssat.data(), rssat.data() + nperf);
} else {
rsmax_perf.assign(0.0, nperf);
}
V surf_dens_copy = superset(fluid.surfaceDensity(0, well_cells), Span(nperf, pu.num_phases, 0), nperf*pu.num_phases);
for (int phase = 1; phase < pu.num_phases; ++phase) {
if ( phase == pu.phase_pos[BlackoilPhases::Vapour]) {
continue; // the gas surface density is added after the solvent is accounted for.
}
surf_dens_copy += superset(fluid.surfaceDensity(phase, well_cells), Span(nperf, pu.num_phases, phase), nperf*pu.num_phases);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
// Unclear wether the effective or the pure values should be used for the wells
// the current usage of unmodified properties values gives best match.
//V bg_eff = subset(rq_[pu.phase_pos[Gas]].b,well_cells).value();
Vector bg = fluid.bGas(avg_press_ad, perf_temp, perf_rv, perf_cond, well_cells).value();
Vector rhog = fluid.surfaceDensity(pu.phase_pos[BlackoilPhases::Vapour], well_cells);
// to handle solvent related
if (has_solvent_) {
const Vector bs = solvent_props_->bSolvent(avg_press_ad,well_cells).value();
//const V bs_eff = subset(rq_[solvent_pos_].b,well_cells).value();
// number of cells
const int nc = state.pressure.size();
const ADB zero = ADB::constant(Vector::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
Vector F_solvent = subset(zero_selector.select(ss, ss / (ss + sg)),well_cells).value();
Vector injectedSolventFraction = Eigen::Map<const Vector>(&xw.solventFraction()[0], nperf);
Vector isProducer = Vector::Zero(nperf);
Vector ones = Vector::Constant(nperf,1.0);
for (int w = 0; w < nw; ++w) {
if(wells().type[w] == PRODUCER) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
isProducer[perf] = 1;
}
}
}
F_solvent = isProducer * F_solvent + (ones - isProducer) * injectedSolventFraction;
bg = bg * (ones - F_solvent);
bg = bg + F_solvent * bs;
const Vector& rhos = solvent_props_->solventSurfaceDensity(well_cells);
rhog = ( (ones - F_solvent) * rhog ) + (F_solvent * rhos);
}
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg;
surf_dens_copy += superset(rhog, Span(nperf, pu.num_phases, pu.phase_pos[BlackoilPhases::Vapour]), nperf*pu.num_phases);
// const Vector rvsat = fluidRvSat(avg_press, perf_so, well_cells);
const Vector rvsat = fluid.rvSat(ADB::constant(avg_press), ADB::constant(perf_so), well_cells).value();
rvmax_perf.assign(rvsat.data(), rvsat.data() + nperf);
} else {
rvmax_perf.assign(0.0, nperf);
}
// b and surf_dens_perf is row major, so can just copy data.
b_perf.assign(b.data(), b.data() + nperf * pu.num_phases);
surf_dens_perf.assign(surf_dens_copy.data(), surf_dens_copy.data() + nperf * pu.num_phases);
}
template <class ReservoirResidualQuant, class SolutionState>
void
StandardWellsSolvent::
extractWellPerfProperties(const SolutionState& state,
const std::vector<ReservoirResidualQuant>& rq,
const int np,
const BlackoilPropsAdInterface& fluid,
const std::vector<bool>& active,
std::vector<ADB>& mob_perfcells,
std::vector<ADB>& b_perfcells) const
{
Base::extractWellPerfProperties(state, rq, np, fluid, active, mob_perfcells, b_perfcells);
// handle the solvent related
if (has_solvent_) {
int gas_pos = fluid.phaseUsage().phase_pos[Gas];
const std::vector<int>& well_cells = wellOps().well_cells;
const int nperf = well_cells.size();
// Gas and solvent is combinded and solved together
// The input in the well equation is then the
// total gas phase = hydro carbon gas + solvent gas
// The total mobility is the sum of the solvent and gas mobiliy
mob_perfcells[gas_pos] += subset(rq[solvent_pos_].mob, well_cells);
// A weighted sum of the b-factors of gas and solvent are used.
const int nc = rq[solvent_pos_].mob.size();
const Opm::PhaseUsage& pu = fluid.phaseUsage();
const ADB zero = ADB::constant(Vector::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value() + sg.value(), Selector<double>::Zero);
ADB F_solvent = subset(zero_selector.select(ss, ss / (ss + sg)),well_cells);
Vector ones = Vector::Constant(nperf,1.0);
b_perfcells[gas_pos] = (ones - F_solvent) * b_perfcells[gas_pos];
b_perfcells[gas_pos] += (F_solvent * subset(rq[solvent_pos_].b, well_cells));
}
}
}