opm-simulators/ebos/eclwriter.hh

506 lines
21 KiB
C++
Raw Normal View History

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::EclWriter
*/
#ifndef EWOMS_ECL_WRITER_HH
#define EWOMS_ECL_WRITER_HH
#include "collecttoiorank.hh"
#include "ecloutputblackoilmodule.hh"
#include <ewoms/disc/ecfv/ecfvdiscretization.hh>
#include <ewoms/io/baseoutputwriter.hh>
#include <ebos/threadhandle.hh>
#if HAVE_ECL_OUTPUT
#include <opm/output/eclipse/EclipseIO.hpp>
#endif
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <boost/algorithm/string.hpp>
#include <list>
#include <utility>
#include <string>
#include <limits>
#include <sstream>
#include <fstream>
#include <type_traits>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(EnableEclOutput);
NEW_PROP_TAG(EclOutputDoublePrecision);
}
template <class TypeTag>
class EclWriter;
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Collects necessary output values and pass it to opm-output.
*
* Caveats:
* - For this class to do do anything meaningful, you will have to
* have the OPM module opm-output.
* - The only DUNE grid which is currently supported is Dune::CpGrid
* from the OPM module "opm-grid". Using another grid won't
* fail at compile time but you will provoke a fatal exception as
* soon as you try to write an ECL output file.
* - This class requires to use the black oil model with the element
* centered finite volume discretization.
*/
template <class TypeTag>
class EclWriter
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Vanguard) Vanguard;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
typedef CollectDataToIORank< Vanguard > CollectDataToIORankType;
typedef std::vector<Scalar> ScalarBuffer;
public:
EclWriter(const Simulator& simulator)
: simulator_(simulator)
, collectToIORank_(simulator_.vanguard())
2018-02-01 06:16:37 -06:00
, eclOutputModule_(simulator, collectToIORank_)
2018-02-01 01:01:16 -06:00
, asyncOutput_()
{
globalGrid_ = simulator_.vanguard().grid();
globalGrid_.switchToGlobalView();
eclIO_.reset(new Opm::EclipseIO(simulator_.vanguard().eclState(),
Opm::UgGridHelpers::createEclipseGrid( globalGrid_ , simulator_.vanguard().eclState().getInputGrid() ),
simulator_.vanguard().schedule(),
simulator_.vanguard().summaryConfig()));
2018-02-01 01:01:16 -06:00
// create output thread if enabled and rank is I/O rank
// async output is enabled by default if pthread are enabled
#if HAVE_PTHREAD
const bool asyncOutputDefault = true;
#else
const bool asyncOutputDefault = false;
#endif
// TODO Add param
const bool isIORank = collectToIORank_.isParallel() && collectToIORank_.isIORank();
if( asyncOutputDefault && isIORank )
{
#if HAVE_PTHREAD
asyncOutput_.reset( new Opm::ThreadHandle( isIORank ) );
#else
throw std::runtime_error("Pthreads were not found, cannot enable async_output");
#endif
}
}
~EclWriter()
{ }
const Opm::EclipseIO& eclIO() const
{ return *eclIO_; }
void writeInit()
{
#if !HAVE_ECL_OUTPUT
throw std::runtime_error("Eclipse output support not available in opm-common, unable to write ECL output!");
#else
if (collectToIORank_.isIORank()) {
std::map<std::string, std::vector<int> > integerVectors;
if (collectToIORank_.isParallel())
integerVectors.emplace("MPI_RANK", collectToIORank_.globalRanks());
eclIO_->writeInitial(computeTrans_(), integerVectors, exportNncStructure_());
}
#endif
}
/*!
* \brief collect and pass data and pass it to eclIO writer
*/
void writeOutput(Opm::data::Wells& localWellData, Scalar t, bool substep, Scalar totalSolverTime, Scalar nextstep)
{
#if !HAVE_ECL_OUTPUT
throw std::runtime_error("Eclipse output support not available in opm-common, unable to write ECL output!");
#else
int episodeIdx = simulator_.episodeIndex() + 1;
const auto& gridView = simulator_.vanguard().gridView();
int numElements = gridView.size(/*codim=*/0);
bool log = collectToIORank_.isIORank();
2018-02-01 06:16:37 -06:00
eclOutputModule_.allocBuffers(numElements, episodeIdx, substep, log);
ElementContext elemCtx(simulator_);
ElementIterator elemIt = gridView.template begin</*codim=*/0>();
const ElementIterator& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const Element& elem = *elemIt;
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
eclOutputModule_.processElement(elemCtx);
}
eclOutputModule_.outputErrorLog();
// collect all data to I/O rank and assign to sol
2018-02-01 01:01:16 -06:00
Opm::data::Solution localCellData = {};
if (!substep)
2018-01-19 08:45:42 -06:00
eclOutputModule_.assignToSolution(localCellData);
// add cell data to perforations for Rft output
if (!substep)
eclOutputModule_.addRftDataToWells(localWellData, episodeIdx);
2018-01-09 06:08:05 -06:00
if (collectToIORank_.isParallel())
collectToIORank_.collect(localCellData, eclOutputModule_.getBlockData(), localWellData);
std::map<std::string, double> miscSummaryData;
std::map<std::string, std::vector<double>> regionData;
2018-01-29 05:23:23 -06:00
eclOutputModule_.outputFipLog(miscSummaryData, regionData, substep);
// write output on I/O rank
if (collectToIORank_.isIORank()) {
std::map<std::string, std::vector<double>> extraRestartData;
// Add suggested next timestep to extra data.
if (!substep)
extraRestartData["OPMEXTRA"] = std::vector<double>(1, nextstep);
// Add TCPU
if (totalSolverTime != 0.0) {
miscSummaryData["TCPU"] = totalSolverTime;
}
bool enableDoublePrecisionOutput = EWOMS_GET_PARAM(TypeTag, bool, EclOutputDoublePrecision);
const Opm::data::Solution& cellData = collectToIORank_.isParallel() ? collectToIORank_.globalCellData() : localCellData;
2018-02-01 01:01:16 -06:00
const Opm::data::Wells& wellData = collectToIORank_.isParallel() ? collectToIORank_.globalWellData() : localWellData;
const std::map<std::pair<std::string, int>, double>& blockData = collectToIORank_.isParallel() ? collectToIORank_.globalBlockData() : eclOutputModule_.getBlockData();
2018-01-19 08:45:42 -06:00
2018-02-01 01:01:16 -06:00
if( asyncOutput_ ) {
// dispatch the write call to the extra thread
asyncOutput_->dispatch( WriterCall(*eclIO_,
episodeIdx,
substep,
t,
cellData,
wellData,
miscSummaryData,
regionData,
blockData,
2018-02-01 01:01:16 -06:00
extraRestartData,
enableDoublePrecisionOutput ) );
} else {
eclIO_->writeTimeStep(episodeIdx,
substep,
t,
cellData,
wellData,
miscSummaryData,
regionData,
blockData,
2018-02-01 01:01:16 -06:00
extraRestartData,
enableDoublePrecisionOutput);
}
}
2018-01-16 07:24:21 -06:00
#endif
}
void restartBegin()
{
bool enableHysteresis = simulator_.problem().materialLawManager()->enableHysteresis();
std::map<std::string, Opm::RestartKey> solution_keys {{"PRESSURE" , Opm::RestartKey(Opm::UnitSystem::measure::pressure)},
{"SWAT" , Opm::RestartKey(Opm::UnitSystem::measure::identity, FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))},
{"SGAS" , Opm::RestartKey(Opm::UnitSystem::measure::identity, FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))},
{"TEMP" , Opm::RestartKey(Opm::UnitSystem::measure::temperature)}, // always required for now
{"RS" , Opm::RestartKey(Opm::UnitSystem::measure::gas_oil_ratio, FluidSystem::enableDissolvedGas())},
{"RV" , Opm::RestartKey(Opm::UnitSystem::measure::oil_gas_ratio, FluidSystem::enableVaporizedOil())},
{"SOMAX", {Opm::UnitSystem::measure::identity, simulator_.problem().vapparsActive()}},
{"PCSWM_OW", {Opm::UnitSystem::measure::identity, enableHysteresis}},
{"KRNSW_OW", {Opm::UnitSystem::measure::identity, enableHysteresis}},
{"PCSWM_GO", {Opm::UnitSystem::measure::identity, enableHysteresis}},
{"KRNSW_GO", {Opm::UnitSystem::measure::identity, enableHysteresis}}};
std::map<std::string, bool> extra_keys {
{"OPMEXTRA" , false}
};
unsigned episodeIdx = simulator_.episodeIndex();
const auto& gridView = simulator_.vanguard().gridView();
unsigned numElements = gridView.size(/*codim=*/0);
2018-02-01 06:16:37 -06:00
eclOutputModule_.allocBuffers(numElements, episodeIdx, /*substep=*/false, /*log=*/false);
auto restart_values = eclIO_->loadRestart(solution_keys, extra_keys);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
unsigned globalIdx = collectToIORank_.localIdxToGlobalIdx(elemIdx);
eclOutputModule_.setRestart(restart_values.solution, elemIdx, globalIdx);
}
}
const EclOutputBlackOilModule<TypeTag>& eclOutputModule() const {
return eclOutputModule_;
}
private:
static bool enableEclOutput_()
{ return EWOMS_GET_PARAM(TypeTag, bool, EnableEclOutput); }
Opm::data::Solution computeTrans_() const
{
const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper();
const auto& cartDims = cartMapper.cartesianDimensions();
const int globalSize = cartDims[0]*cartDims[1]*cartDims[2];
Opm::data::CellData tranx = {Opm::UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), Opm::data::TargetType::INIT};
Opm::data::CellData trany = {Opm::UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), Opm::data::TargetType::INIT};
Opm::data::CellData tranz = {Opm::UnitSystem::measure::transmissibility, std::vector<double>( globalSize ), Opm::data::TargetType::INIT};
for (size_t i = 0; i < tranx.data.size(); ++i) {
tranx.data[0] = 0.0;
trany.data[0] = 0.0;
tranz.data[0] = 0.0;
}
const auto& globalGridView = globalGrid_.leafGridView();
typedef typename Grid::LeafGridView GridView;
#if DUNE_VERSION_NEWER(DUNE_GRID, 2,6)
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView> ElementMapper;
ElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
#else
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, Dune::MCMGElementLayout> ElementMapper;
ElementMapper globalElemMapper(globalGridView);
#endif
const auto& cartesianCellIdx = globalGrid_.globalCell();
const auto* globalTrans = &(simulator_.vanguard().globalTransmissibility());
if (!collectToIORank_.isParallel()) {
// in the sequential case we must use the transmissibilites defined by
// the problem. (because in the sequential case, the grid manager does
// not compute "global" transmissibilities for performance reasons. in
// the parallel case, the problem's transmissibilities can't be used
// because this object refers to the distributed grid and we need the
// sequential version here.)
globalTrans = &simulator_.problem().eclTransmissibilities();
}
auto elemIt = globalGridView.template begin</*codim=*/0>();
const auto& elemEndIt = globalGridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
{
continue; // intersection is on the domain boundary
}
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
{
continue; // we only need to handle each connection once, thank you.
}
int gc1 = std::min(cartesianCellIdx[c1], cartesianCellIdx[c2]);
int gc2 = std::max(cartesianCellIdx[c1], cartesianCellIdx[c2]);
if (gc2 - gc1 == 1) {
tranx.data[gc1] = globalTrans->transmissibility(c1, c2);
}
if (gc2 - gc1 == cartDims[0]) {
trany.data[gc1] = globalTrans->transmissibility(c1, c2);
}
if (gc2 - gc1 == cartDims[0]*cartDims[1]) {
tranz.data[gc1] = globalTrans->transmissibility(c1, c2);
}
}
}
return {{"TRANX" , tranx},
{"TRANY" , trany} ,
{"TRANZ" , tranz}};
}
Opm::NNC exportNncStructure_() const
{
Opm::NNC nnc = eclState().getInputNNC();
int nx = eclState().getInputGrid().getNX();
int ny = eclState().getInputGrid().getNY();
const auto& globalGridView = globalGrid_.leafGridView();
typedef typename Grid::LeafGridView GridView;
#if DUNE_VERSION_NEWER(DUNE_GRID, 2,6)
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView> ElementMapper;
ElementMapper globalElemMapper(globalGridView, Dune::mcmgElementLayout());
#else
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, Dune::MCMGElementLayout> ElementMapper;
ElementMapper globalElemMapper(globalGridView);
#endif
const auto* globalTrans = &(simulator_.vanguard().globalTransmissibility());
if (!collectToIORank_.isParallel()) {
// in the sequential case we must use the transmissibilites defined by
// the problem. (because in the sequential case, the grid manager does
// not compute "global" transmissibilities for performance reasons. in
// the parallel case, the problem's transmissibilities can't be used
// because this object refers to the distributed grid and we need the
// sequential version here.)
globalTrans = &simulator_.problem().eclTransmissibilities();
}
auto elemIt = globalGridView.template begin</*codim=*/0>();
const auto& elemEndIt = globalGridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++ elemIt) {
const auto& elem = *elemIt;
auto isIt = globalGridView.ibegin(elem);
const auto& isEndIt = globalGridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
const auto& is = *isIt;
if (!is.neighbor())
{
continue; // intersection is on the domain boundary
}
unsigned c1 = globalElemMapper.index(is.inside());
unsigned c2 = globalElemMapper.index(is.outside());
if (c1 > c2)
{
continue; // we only need to handle each connection once, thank you.
}
// TODO (?): use the cartesian index mapper to make this code work
// with grids other than Dune::CpGrid. The problem is that we need
// the a mapper for the sequential grid, not for the distributed one.
int cc1 = globalGrid_.globalCell()[c1];
int cc2 = globalGrid_.globalCell()[c2];
if (std::abs(cc1 - cc2) != 1 &&
std::abs(cc1 - cc2) != nx &&
std::abs(cc1 - cc2) != nx*ny)
{
nnc.addNNC(cc1, cc2, globalTrans->transmissibility(c1, c2));
}
}
}
return nnc;
}
2018-02-01 01:01:16 -06:00
struct WriterCall : public Opm::ThreadHandle :: ObjectInterface
{
Opm::EclipseIO& eclIO_;
int episodeIdx_;
bool isSubstep_;
double secondsElapsed_;
Opm::data::Solution cellData_;
Opm::data::Wells wellData_;
std::map<std::string, double> singleSummaryValues_;
std::map<std::string, std::vector<double>> regionSummaryValues_;
std::map<std::pair<std::string, int>, double> blockSummaryValues_;
std::map<std::string, std::vector<double>> extraRestartData_;
bool writeDoublePrecision_;
explicit WriterCall(
Opm::EclipseIO& eclIO,
int episodeIdx,
bool isSubstep,
double secondsElapsed,
Opm::data::Solution cellData,
Opm::data::Wells wellData,
const std::map<std::string, double>& singleSummaryValues,
const std::map<std::string, std::vector<double>>& regionSummaryValues,
const std::map<std::pair<std::string, int>, double>& blockSummaryValues,
const std::map<std::string, std::vector<double>>& extraRestartData,
bool writeDoublePrecision)
: eclIO_(eclIO),
episodeIdx_(episodeIdx),
isSubstep_(isSubstep),
secondsElapsed_(secondsElapsed),
cellData_(cellData),
wellData_(wellData),
singleSummaryValues_(singleSummaryValues),
regionSummaryValues_(regionSummaryValues),
blockSummaryValues_(blockSummaryValues),
extraRestartData_(extraRestartData),
writeDoublePrecision_(writeDoublePrecision)
{
}
// callback to eclIO serial writeTimeStep method
void run ()
{
// write data
eclIO_.writeTimeStep(episodeIdx_,
isSubstep_,
secondsElapsed_,
cellData_,
wellData_,
singleSummaryValues_,
regionSummaryValues_,
blockSummaryValues_,
extraRestartData_,
writeDoublePrecision_);
}
};
const Opm::EclipseState& eclState() const
{ return simulator_.vanguard().eclState(); }
const Simulator& simulator_;
CollectDataToIORankType collectToIORank_;
2018-02-01 06:16:37 -06:00
EclOutputBlackOilModule<TypeTag> eclOutputModule_;
std::unique_ptr<Opm::EclipseIO> eclIO_;
Grid globalGrid_;
2018-02-01 01:01:16 -06:00
std::unique_ptr< Opm::ThreadHandle > asyncOutput_;
};
} // namespace Ewoms
#endif