2025-01-02 07:18:56 -06:00
|
|
|
/*
|
|
|
|
*/
|
|
|
|
#ifndef OPM_ADAPTIVE_TIME_STEPPING_IMPL_HPP
|
|
|
|
#define OPM_ADAPTIVE_TIME_STEPPING_IMPL_HPP
|
|
|
|
|
|
|
|
// Improve IDE experience
|
|
|
|
#ifndef OPM_ADAPTIVE_TIME_STEPPING_HPP
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
|
|
|
|
#include <opm/grid/utility/StopWatch.hpp>
|
|
|
|
|
|
|
|
#include <opm/input/eclipse/Units/Units.hpp>
|
|
|
|
#include <opm/input/eclipse/Units/UnitSystem.hpp>
|
|
|
|
|
|
|
|
#include <opm/models/utils/parametersystem.hpp>
|
|
|
|
|
2025-01-14 01:02:30 -06:00
|
|
|
#include <opm/simulators/timestepping/EclTimeSteppingParams.hpp>
|
|
|
|
|
2025-01-02 07:18:56 -06:00
|
|
|
#include <algorithm>
|
|
|
|
#include <cassert>
|
|
|
|
#include <cmath>
|
|
|
|
#include <sstream>
|
|
|
|
#include <stdexcept>
|
|
|
|
|
|
|
|
#include <fmt/format.h>
|
2025-01-06 03:32:27 -06:00
|
|
|
#include <fmt/ranges.h>
|
2025-01-02 07:18:56 -06:00
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
AdaptiveTimeStepping(const UnitSystem& unitSystem,
|
|
|
|
const double max_next_tstep,
|
|
|
|
const bool terminalOutput)
|
|
|
|
: timeStepControl_()
|
|
|
|
, restartFactor_(Parameters::Get<Parameters::SolverRestartFactor<Scalar>>()) // 0.33
|
|
|
|
, growthFactor_(Parameters::Get<Parameters::SolverGrowthFactor<Scalar>>()) // 2.0
|
|
|
|
, maxGrowth_(Parameters::Get<Parameters::SolverMaxGrowth<Scalar>>()) // 3.0
|
|
|
|
, maxTimeStep_(Parameters::Get<Parameters::SolverMaxTimeStepInDays<Scalar>>() * 24 * 60 * 60) // 365.25
|
|
|
|
, minTimeStep_(unitSystem.to_si(UnitSystem::measure::time, Parameters::Get<Parameters::SolverMinTimeStep<Scalar>>())) // 1e-12;
|
|
|
|
, ignoreConvergenceFailure_(Parameters::Get<Parameters::SolverContinueOnConvergenceFailure>()) // false;
|
|
|
|
, solverRestartMax_(Parameters::Get<Parameters::SolverMaxRestarts>()) // 10
|
|
|
|
, solverVerbose_(Parameters::Get<Parameters::SolverVerbosity>() > 0 && terminalOutput) // 2
|
|
|
|
, timestepVerbose_(Parameters::Get<Parameters::TimeStepVerbosity>() > 0 && terminalOutput) // 2
|
|
|
|
, suggestedNextTimestep_((max_next_tstep <= 0 ? Parameters::Get<Parameters::InitialTimeStepInDays>() : max_next_tstep) * 24 * 60 * 60) // 1.0
|
|
|
|
, fullTimestepInitially_(Parameters::Get<Parameters::FullTimeStepInitially>()) // false
|
|
|
|
, timestepAfterEvent_(Parameters::Get<Parameters::TimeStepAfterEventInDays<Scalar>>() * 24 * 60 * 60) // 1e30
|
|
|
|
, useNewtonIteration_(false)
|
|
|
|
, minTimeStepBeforeShuttingProblematicWells_(Parameters::Get<Parameters::MinTimeStepBeforeShuttingProblematicWellsInDays>() * unit::day)
|
|
|
|
|
|
|
|
{
|
|
|
|
init_(unitSystem);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
AdaptiveTimeStepping(double max_next_tstep,
|
|
|
|
const Tuning& tuning,
|
|
|
|
const UnitSystem& unitSystem,
|
|
|
|
const bool terminalOutput)
|
|
|
|
: timeStepControl_()
|
|
|
|
, restartFactor_(tuning.TSFCNV)
|
|
|
|
, growthFactor_(tuning.TFDIFF)
|
|
|
|
, maxGrowth_(tuning.TSFMAX)
|
|
|
|
, maxTimeStep_(tuning.TSMAXZ) // 365.25
|
|
|
|
, minTimeStep_(tuning.TSFMIN) // 0.1;
|
|
|
|
, ignoreConvergenceFailure_(true)
|
|
|
|
, solverRestartMax_(Parameters::Get<Parameters::SolverMaxRestarts>()) // 10
|
|
|
|
, solverVerbose_(Parameters::Get<Parameters::SolverVerbosity>() > 0 && terminalOutput) // 2
|
|
|
|
, timestepVerbose_(Parameters::Get<Parameters::TimeStepVerbosity>() > 0 && terminalOutput) // 2
|
|
|
|
, suggestedNextTimestep_(max_next_tstep <= 0 ? Parameters::Get<Parameters::InitialTimeStepInDays>() * 24 * 60 * 60 : max_next_tstep) // 1.0
|
|
|
|
, fullTimestepInitially_(Parameters::Get<Parameters::FullTimeStepInitially>()) // false
|
|
|
|
, timestepAfterEvent_(tuning.TMAXWC) // 1e30
|
|
|
|
, useNewtonIteration_(false)
|
|
|
|
, minTimeStepBeforeShuttingProblematicWells_(Parameters::Get<Parameters::MinTimeStepBeforeShuttingProblematicWellsInDays>() * unit::day)
|
|
|
|
{
|
|
|
|
init_(unitSystem);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
void AdaptiveTimeStepping<TypeTag>::registerParameters()
|
|
|
|
{
|
|
|
|
registerEclTimeSteppingParameters<Scalar>();
|
|
|
|
detail::registerAdaptiveParameters();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
template<class Solver>
|
|
|
|
SimulatorReport
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
step(const SimulatorTimer& simulatorTimer,
|
|
|
|
Solver& solver,
|
|
|
|
const bool isEvent,
|
|
|
|
const std::function<bool(const double, const double, const int)> tuningUpdater)
|
|
|
|
{
|
|
|
|
// Maybe update tuning
|
|
|
|
tuningUpdater(simulatorTimer.simulationTimeElapsed(), suggestedNextTimestep_, 0);
|
|
|
|
SimulatorReport report;
|
|
|
|
const double timestep = simulatorTimer.currentStepLength();
|
|
|
|
|
|
|
|
// init last time step as a fraction of the given time step
|
|
|
|
if (suggestedNextTimestep_ < 0) {
|
|
|
|
suggestedNextTimestep_ = restartFactor_ * timestep;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fullTimestepInitially_) {
|
|
|
|
suggestedNextTimestep_ = timestep;
|
|
|
|
}
|
|
|
|
|
|
|
|
// use seperate time step after event
|
|
|
|
if (isEvent && timestepAfterEvent_ > 0) {
|
|
|
|
suggestedNextTimestep_ = timestepAfterEvent_;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto& simulator = solver.model().simulator();
|
|
|
|
auto& problem = simulator.problem();
|
|
|
|
|
|
|
|
// create adaptive step timer with previously used sub step size
|
|
|
|
AdaptiveSimulatorTimer substepTimer(simulatorTimer, suggestedNextTimestep_, maxTimeStep_);
|
|
|
|
|
|
|
|
// counter for solver restarts
|
|
|
|
int restarts = 0;
|
|
|
|
|
|
|
|
// sub step time loop
|
|
|
|
while (!substepTimer.done()) {
|
|
|
|
// Maybe update tuning
|
|
|
|
// get current delta t
|
|
|
|
auto oldValue = suggestedNextTimestep_;
|
|
|
|
if (tuningUpdater(substepTimer.simulationTimeElapsed(),
|
|
|
|
substepTimer.currentStepLength(),
|
|
|
|
substepTimer.currentStepNum())) {
|
|
|
|
// Use provideTimeStepEstimate to make we sure don't simulate longer than the report step is.
|
|
|
|
substepTimer.provideTimeStepEstimate(suggestedNextTimestep_);
|
|
|
|
suggestedNextTimestep_ = oldValue;
|
|
|
|
}
|
|
|
|
const double dt = substepTimer.currentStepLength();
|
|
|
|
if (timestepVerbose_) {
|
|
|
|
detail::logTimer(substepTimer);
|
|
|
|
}
|
|
|
|
|
|
|
|
SimulatorReportSingle substepReport;
|
|
|
|
std::string causeOfFailure;
|
|
|
|
try {
|
|
|
|
substepReport = solver.step(substepTimer);
|
|
|
|
|
|
|
|
if (solverVerbose_) {
|
|
|
|
// report number of linear iterations
|
|
|
|
OpmLog::debug("Overall linear iterations used: " +
|
|
|
|
std::to_string(substepReport.total_linear_iterations));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
catch (const TooManyIterations& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
causeOfFailure = "Solver convergence failure - Iteration limit reached";
|
|
|
|
|
|
|
|
logException_(e, solverVerbose_);
|
|
|
|
// since linearIterations is < 0 this will restart the solver
|
|
|
|
}
|
|
|
|
catch (const ConvergenceMonitorFailure& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
causeOfFailure = "Convergence monitor failure";
|
|
|
|
}
|
|
|
|
catch (const LinearSolverProblem& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
causeOfFailure = "Linear solver convergence failure";
|
|
|
|
|
|
|
|
logException_(e, solverVerbose_);
|
|
|
|
// since linearIterations is < 0 this will restart the solver
|
|
|
|
}
|
|
|
|
catch (const NumericalProblem& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
causeOfFailure = "Solver convergence failure - Numerical problem encountered";
|
|
|
|
|
|
|
|
logException_(e, solverVerbose_);
|
|
|
|
// since linearIterations is < 0 this will restart the solver
|
|
|
|
}
|
|
|
|
catch (const std::runtime_error& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
|
|
|
|
logException_(e, solverVerbose_);
|
|
|
|
// also catch linear solver not converged
|
|
|
|
}
|
|
|
|
catch (const Dune::ISTLError& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
|
|
|
|
logException_(e, solverVerbose_);
|
|
|
|
// also catch errors in ISTL AMG that occur when time step is too large
|
|
|
|
}
|
|
|
|
catch (const Dune::MatrixBlockError& e) {
|
|
|
|
substepReport = solver.failureReport();
|
|
|
|
|
|
|
|
logException_(e, solverVerbose_);
|
|
|
|
// this can be thrown by ISTL's ILU0 in block mode, yet is not an ISTLError
|
|
|
|
}
|
|
|
|
|
|
|
|
//Pass substep to eclwriter for summary output
|
|
|
|
simulator.problem().setSubStepReport(substepReport);
|
|
|
|
|
|
|
|
report += substepReport;
|
|
|
|
|
|
|
|
bool continue_on_uncoverged_solution = ignoreConvergenceFailure_ &&
|
|
|
|
!substepReport.converged &&
|
|
|
|
dt <= minTimeStep_;
|
|
|
|
|
|
|
|
if (continue_on_uncoverged_solution && solverVerbose_) {
|
|
|
|
const auto msg = fmt::format(
|
|
|
|
"Solver failed to converge but timestep "
|
|
|
|
"{} is smaller or equal to {}\n"
|
|
|
|
"which is the minimum threshold given "
|
|
|
|
"by option --solver-min-time-step\n",
|
|
|
|
dt, minTimeStep_
|
|
|
|
);
|
|
|
|
OpmLog::problem(msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (substepReport.converged || continue_on_uncoverged_solution) {
|
|
|
|
|
|
|
|
// advance by current dt
|
|
|
|
++substepTimer;
|
|
|
|
|
|
|
|
// create object to compute the time error, simply forwards the call to the model
|
|
|
|
SolutionTimeErrorSolverWrapper<Solver> relativeChange(solver);
|
|
|
|
|
|
|
|
// compute new time step estimate
|
|
|
|
const int iterations = useNewtonIteration_ ? substepReport.total_newton_iterations
|
|
|
|
: substepReport.total_linear_iterations;
|
|
|
|
double dtEstimate = timeStepControl_->computeTimeStepSize(dt, iterations, relativeChange,
|
|
|
|
substepTimer.simulationTimeElapsed());
|
|
|
|
|
|
|
|
assert(dtEstimate > 0);
|
|
|
|
// limit the growth of the timestep size by the growth factor
|
|
|
|
dtEstimate = std::min(dtEstimate, double(maxGrowth_ * dt));
|
|
|
|
assert(dtEstimate > 0);
|
|
|
|
// further restrict time step size growth after convergence problems
|
|
|
|
if (restarts > 0) {
|
|
|
|
dtEstimate = std::min(growthFactor_ * dt, dtEstimate);
|
|
|
|
// solver converged, reset restarts counter
|
|
|
|
restarts = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (timestepVerbose_) {
|
|
|
|
std::ostringstream ss;
|
|
|
|
substepReport.reportStep(ss);
|
|
|
|
OpmLog::info(ss.str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// write data if outputWriter was provided
|
|
|
|
// if the time step is done we do not need
|
|
|
|
// to write it as this will be done by the simulator
|
|
|
|
// anyway.
|
|
|
|
if (!substepTimer.done()) {
|
|
|
|
time::StopWatch perfTimer;
|
|
|
|
perfTimer.start();
|
|
|
|
|
|
|
|
problem.writeOutput(true);
|
|
|
|
|
|
|
|
report.success.output_write_time += perfTimer.secsSinceStart();
|
|
|
|
}
|
|
|
|
|
|
|
|
// set new time step length
|
|
|
|
substepTimer.provideTimeStepEstimate(dtEstimate);
|
|
|
|
|
|
|
|
report.success.converged = substepTimer.done();
|
|
|
|
substepTimer.setLastStepFailed(false);
|
|
|
|
|
|
|
|
}
|
|
|
|
else { // in case of no convergence
|
|
|
|
substepTimer.setLastStepFailed(true);
|
|
|
|
|
|
|
|
// If we have restarted (i.e. cut the timestep) too
|
|
|
|
// many times, we have failed and throw an exception.
|
|
|
|
if (restarts >= solverRestartMax_) {
|
|
|
|
const auto msg = fmt::format(
|
|
|
|
"Solver failed to converge after cutting timestep {} times.",
|
|
|
|
restarts
|
|
|
|
);
|
|
|
|
if (solverVerbose_) {
|
|
|
|
OpmLog::error(msg);
|
|
|
|
}
|
|
|
|
// Use throw directly to prevent file and line
|
|
|
|
throw TimeSteppingBreakdown{msg};
|
|
|
|
}
|
|
|
|
|
|
|
|
// The new, chopped timestep.
|
|
|
|
const double newTimeStep = restartFactor_ * dt;
|
|
|
|
|
|
|
|
|
|
|
|
// If we have restarted (i.e. cut the timestep) too
|
|
|
|
// much, we have failed and throw an exception.
|
|
|
|
if (newTimeStep < minTimeStep_) {
|
|
|
|
const auto msg = fmt::format(
|
|
|
|
"Solver failed to converge after cutting timestep to {}\n"
|
|
|
|
"which is the minimum threshold given by option --solver-min-time-step\n",
|
|
|
|
minTimeStep_
|
|
|
|
);
|
|
|
|
if (solverVerbose_) {
|
|
|
|
OpmLog::error(msg);
|
|
|
|
}
|
|
|
|
// Use throw directly to prevent file and line
|
|
|
|
throw TimeSteppingBreakdown{msg};
|
|
|
|
}
|
|
|
|
|
|
|
|
// Define utility function for chopping timestep.
|
|
|
|
auto chopTimestep = [&]() {
|
|
|
|
substepTimer.provideTimeStepEstimate(newTimeStep);
|
|
|
|
if (solverVerbose_) {
|
|
|
|
const auto msg = fmt::format(
|
|
|
|
"{}\nTimestep chopped to {} days\n",
|
|
|
|
causeOfFailure,
|
2025-01-02 08:20:26 -06:00
|
|
|
unit::convert::to(substepTimer.currentStepLength(), unit::day)
|
2025-01-02 07:18:56 -06:00
|
|
|
);
|
|
|
|
OpmLog::problem(msg);
|
|
|
|
}
|
|
|
|
++restarts;
|
|
|
|
};
|
|
|
|
|
|
|
|
const double minimumChoppedTimestep = minTimeStepBeforeShuttingProblematicWells_;
|
|
|
|
if (newTimeStep > minimumChoppedTimestep) {
|
|
|
|
chopTimestep();
|
|
|
|
} else {
|
|
|
|
// We are below the threshold, and will check if there are any
|
|
|
|
// wells we should close rather than chopping again.
|
|
|
|
std::set<std::string> failing_wells = detail::consistentlyFailingWells(solver.model().stepReports());
|
|
|
|
if (failing_wells.empty()) {
|
|
|
|
// Found no wells to close, chop the timestep as above.
|
|
|
|
chopTimestep();
|
|
|
|
} else {
|
|
|
|
// Close all consistently failing wells that are not under group control
|
|
|
|
std::vector<std::string> shut_wells;
|
|
|
|
for (const auto& well : failing_wells) {
|
|
|
|
bool was_shut = solver.model().wellModel().forceShutWellByName(
|
|
|
|
well, substepTimer.simulationTimeElapsed(), /*dont_shut_grup_wells =*/ true);
|
|
|
|
if (was_shut) {
|
|
|
|
shut_wells.push_back(well);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If no wells are closed we also try to shut wells under group control
|
|
|
|
if (shut_wells.empty()) {
|
|
|
|
for (const auto& well : failing_wells) {
|
|
|
|
bool was_shut = solver.model().wellModel().forceShutWellByName(
|
|
|
|
well, substepTimer.simulationTimeElapsed(), /*dont_shut_grup_wells =*/ false);
|
|
|
|
if (was_shut) {
|
|
|
|
shut_wells.push_back(well);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If still no wells are closed we must fall back to chopping again
|
|
|
|
if (shut_wells.empty()) {
|
|
|
|
chopTimestep();
|
|
|
|
} else {
|
|
|
|
substepTimer.provideTimeStepEstimate(dt);
|
|
|
|
if (solverVerbose_) {
|
2025-01-02 08:21:54 -06:00
|
|
|
const std::string msg =
|
|
|
|
fmt::format("\nProblematic well(s) were shut: {}"
|
|
|
|
"(retrying timestep)\n",
|
|
|
|
fmt::join(shut_wells, " "));
|
2025-01-02 07:18:56 -06:00
|
|
|
OpmLog::problem(msg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
problem.setNextTimeStepSize(substepTimer.currentStepLength());
|
|
|
|
}
|
|
|
|
|
|
|
|
// store estimated time step for next reportStep
|
|
|
|
suggestedNextTimestep_ = substepTimer.currentStepLength();
|
|
|
|
if (timestepVerbose_) {
|
|
|
|
std::ostringstream ss;
|
|
|
|
substepTimer.report(ss);
|
|
|
|
ss << "Suggested next step size = " << unit::convert::to(suggestedNextTimestep_, unit::day) << " (days)" << std::endl;
|
|
|
|
OpmLog::debug(ss.str());
|
|
|
|
}
|
|
|
|
|
|
|
|
if (! std::isfinite(suggestedNextTimestep_)) { // check for NaN
|
|
|
|
suggestedNextTimestep_ = timestep;
|
|
|
|
}
|
|
|
|
return report;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
void AdaptiveTimeStepping<TypeTag>::
|
|
|
|
updateTUNING(double max_next_tstep, const Tuning& tuning)
|
|
|
|
{
|
|
|
|
restartFactor_ = tuning.TSFCNV;
|
|
|
|
growthFactor_ = tuning.TFDIFF;
|
|
|
|
maxGrowth_ = tuning.TSFMAX;
|
|
|
|
maxTimeStep_ = tuning.TSMAXZ;
|
|
|
|
updateNEXTSTEP(max_next_tstep);
|
|
|
|
timestepAfterEvent_ = tuning.TMAXWC;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
void AdaptiveTimeStepping<TypeTag>::
|
|
|
|
updateNEXTSTEP(double max_next_tstep)
|
|
|
|
{
|
|
|
|
// \Note Only update next suggested step if TSINIT was explicitly set in TUNING or NEXTSTEP is active.
|
|
|
|
if (max_next_tstep > 0) {
|
|
|
|
suggestedNextTimestep_ = max_next_tstep;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
template<class Serializer>
|
|
|
|
void AdaptiveTimeStepping<TypeTag>::
|
|
|
|
serializeOp(Serializer& serializer)
|
|
|
|
{
|
|
|
|
serializer(timeStepControlType_);
|
|
|
|
switch (timeStepControlType_) {
|
|
|
|
case TimeStepControlType::HardCodedTimeStep:
|
|
|
|
allocAndSerialize<HardcodedTimeStepControl>(serializer);
|
|
|
|
break;
|
|
|
|
case TimeStepControlType::PIDAndIterationCount:
|
|
|
|
allocAndSerialize<PIDAndIterationCountTimeStepControl>(serializer);
|
|
|
|
break;
|
|
|
|
case TimeStepControlType::SimpleIterationCount:
|
|
|
|
allocAndSerialize<SimpleIterationCountTimeStepControl>(serializer);
|
|
|
|
break;
|
|
|
|
case TimeStepControlType::PID:
|
|
|
|
allocAndSerialize<PIDTimeStepControl>(serializer);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
serializer(restartFactor_);
|
|
|
|
serializer(growthFactor_);
|
|
|
|
serializer(maxGrowth_);
|
|
|
|
serializer(maxTimeStep_);
|
|
|
|
serializer(minTimeStep_);
|
|
|
|
serializer(ignoreConvergenceFailure_);
|
|
|
|
serializer(solverRestartMax_);
|
|
|
|
serializer(solverVerbose_);
|
|
|
|
serializer(timestepVerbose_);
|
|
|
|
serializer(suggestedNextTimestep_);
|
|
|
|
serializer(fullTimestepInitially_);
|
|
|
|
serializer(timestepAfterEvent_);
|
|
|
|
serializer(useNewtonIteration_);
|
|
|
|
serializer(minTimeStepBeforeShuttingProblematicWells_);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
serializationTestObjectHardcoded()
|
|
|
|
{
|
|
|
|
return serializationTestObject_<HardcodedTimeStepControl>();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
serializationTestObjectPID()
|
|
|
|
{
|
|
|
|
return serializationTestObject_<PIDTimeStepControl>();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
serializationTestObjectPIDIt()
|
|
|
|
{
|
|
|
|
return serializationTestObject_<PIDAndIterationCountTimeStepControl>();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
serializationTestObjectSimple()
|
|
|
|
{
|
|
|
|
return serializationTestObject_<SimpleIterationCountTimeStepControl>();
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
bool
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
operator==(const AdaptiveTimeStepping<TypeTag>& rhs) const
|
|
|
|
{
|
|
|
|
if (timeStepControlType_ != rhs.timeStepControlType_ ||
|
|
|
|
(timeStepControl_ && !rhs.timeStepControl_) ||
|
|
|
|
(!timeStepControl_ && rhs.timeStepControl_)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool result = false;
|
|
|
|
switch (timeStepControlType_) {
|
|
|
|
case TimeStepControlType::HardCodedTimeStep:
|
|
|
|
result = castAndComp<HardcodedTimeStepControl>(rhs);
|
|
|
|
break;
|
|
|
|
case TimeStepControlType::PIDAndIterationCount:
|
|
|
|
result = castAndComp<PIDAndIterationCountTimeStepControl>(rhs);
|
|
|
|
break;
|
|
|
|
case TimeStepControlType::SimpleIterationCount:
|
|
|
|
result = castAndComp<SimpleIterationCountTimeStepControl>(rhs);
|
|
|
|
break;
|
|
|
|
case TimeStepControlType::PID:
|
|
|
|
result = castAndComp<PIDTimeStepControl>(rhs);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result
|
|
|
|
&& this->restartFactor_ == rhs.restartFactor_
|
|
|
|
&& this->growthFactor_ == rhs.growthFactor_
|
|
|
|
&& this->maxGrowth_ == rhs.maxGrowth_
|
|
|
|
&& this->maxTimeStep_ == rhs.maxTimeStep_
|
|
|
|
&& this->minTimeStep_ == rhs.minTimeStep_
|
|
|
|
&& this->ignoreConvergenceFailure_ == rhs.ignoreConvergenceFailure_
|
|
|
|
&& this->solverRestartMax_== rhs.solverRestartMax_
|
|
|
|
&& this->solverVerbose_ == rhs.solverVerbose_
|
|
|
|
&& this->fullTimestepInitially_ == rhs.fullTimestepInitially_
|
|
|
|
&& this->timestepAfterEvent_ == rhs.timestepAfterEvent_
|
|
|
|
&& this->useNewtonIteration_ == rhs.useNewtonIteration_
|
|
|
|
&& this->minTimeStepBeforeShuttingProblematicWells_ ==
|
|
|
|
rhs.minTimeStepBeforeShuttingProblematicWells_;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
template<class Controller>
|
|
|
|
AdaptiveTimeStepping<TypeTag>
|
|
|
|
AdaptiveTimeStepping<TypeTag>::
|
|
|
|
serializationTestObject_()
|
|
|
|
{
|
|
|
|
AdaptiveTimeStepping<TypeTag> result;
|
|
|
|
|
|
|
|
result.restartFactor_ = 1.0;
|
|
|
|
result.growthFactor_ = 2.0;
|
|
|
|
result.maxGrowth_ = 3.0;
|
|
|
|
result.maxTimeStep_ = 4.0;
|
|
|
|
result.minTimeStep_ = 5.0;
|
|
|
|
result.ignoreConvergenceFailure_ = true;
|
|
|
|
result.solverRestartMax_ = 6;
|
|
|
|
result.solverVerbose_ = true;
|
|
|
|
result.timestepVerbose_ = true;
|
|
|
|
result.suggestedNextTimestep_ = 7.0;
|
|
|
|
result.fullTimestepInitially_ = true;
|
|
|
|
result.useNewtonIteration_ = true;
|
|
|
|
result.minTimeStepBeforeShuttingProblematicWells_ = 9.0;
|
|
|
|
result.timeStepControlType_ = Controller::Type;
|
|
|
|
result.timeStepControl_ = std::make_unique<Controller>(Controller::serializationTestObject());
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class TypeTag>
|
|
|
|
void AdaptiveTimeStepping<TypeTag>::
|
|
|
|
init_(const UnitSystem& unitSystem)
|
|
|
|
{
|
2025-01-03 02:12:51 -06:00
|
|
|
std::tie(timeStepControlType_,
|
|
|
|
timeStepControl_,
|
|
|
|
useNewtonIteration_) = detail::createController(unitSystem);
|
2025-01-02 07:18:56 -06:00
|
|
|
|
|
|
|
// make sure growth factor is something reasonable
|
2025-01-02 08:17:19 -06:00
|
|
|
if (growthFactor_ < 1.0) {
|
|
|
|
OPM_THROW(std::runtime_error,
|
|
|
|
"Growth factor cannot be less than 1.");
|
|
|
|
}
|
2025-01-02 07:18:56 -06:00
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
|
|
#endif
|