opm-simulators/opm/autodiff/WellConnectionAuxiliaryModule.hpp

131 lines
4.2 KiB
C++
Raw Normal View History

/*
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLCONNECTIONAUXILIARYMODULE_HEADER_INCLUDED
#define OPM_WELLCONNECTIONAUXILIARYMODULE_HEADER_INCLUDED
#include <ewoms/disc/common/baseauxiliarymodule.hh>
2018-02-14 15:22:08 -06:00
#include <opm/grid/CpGrid.hpp>
#include <opm/core/wells.h>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
namespace Opm
{
template<class TypeTag>
class WellConnectionAuxiliaryModule
: public Ewoms::BaseAuxiliaryModule<TypeTag>
{
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) GlobalEqVector;
typedef typename GET_PROP_TYPE(TypeTag, JacobianMatrix) JacobianMatrix;
public:
using NeighborSet = typename
Ewoms::BaseAuxiliaryModule<TypeTag>::NeighborSet;
WellConnectionAuxiliaryModule(const Schedule& schedule,
const Dune::CpGrid& grid)
{
// Create cartesian to compressed mapping
const auto& globalCell = grid.globalCell();
const auto& cartesianSize = grid.logicalCartesianSize();
auto size = cartesianSize[0]*cartesianSize[1]*cartesianSize[2];
std::vector<int> cartesianToCompressed(size, -1);
auto begin = globalCell.begin();
2018-02-26 02:09:12 -06:00
for ( auto cell = begin, end= globalCell.end(); cell != end; ++cell )
{
cartesianToCompressed[ *cell ] = cell - begin;
}
2018-02-26 02:09:12 -06:00
int last_time_step = schedule.getTimeMap().size() - 1;
const auto& schedule_wells = schedule.getWells();
wells_.reserve(schedule_wells.size());
// initialize the additional cell connections introduced by wells.
2018-02-26 02:09:12 -06:00
for ( const auto well : schedule_wells )
{
std::vector<int> compressed_well_perforations;
// All possible completions of the well
2018-06-10 14:21:14 -05:00
const auto& completionSet = well->getConnections(last_time_step);
compressed_well_perforations.reserve(completionSet.size());
2018-02-26 02:09:12 -06:00
for ( size_t c=0; c < completionSet.size(); c++ )
{
const auto& completion = completionSet.get(c);
int i = completion.getI();
int j = completion.getJ();
int k = completion.getK();
int cart_grid_idx = i + cartesianSize[0]*(j + cartesianSize[1]*k);
int compressed_idx = cartesianToCompressed[cart_grid_idx];
if ( compressed_idx >= 0 ) // Ignore completions in inactive/remote cells.
{
compressed_well_perforations.push_back(compressed_idx);
}
}
2018-02-26 02:09:12 -06:00
if ( ! compressed_well_perforations.empty() )
{
std::sort(compressed_well_perforations.begin(),
compressed_well_perforations.end());
wells_.push_back(compressed_well_perforations);
}
}
}
unsigned numDofs() const
{
// No extra dofs are inserted for wells.
return 0;
}
void addNeighbors(std::vector<NeighborSet>& neighbors) const
{
for(const auto well_perforations : wells_)
{
for(const auto& perforation : well_perforations)
neighbors[perforation].insert(well_perforations.begin(),
well_perforations.end());
}
}
void applyInitial()
{}
2018-02-26 05:33:12 -06:00
void linearize(JacobianMatrix& , GlobalEqVector&)
{
// Linearization is done in StandardDenseWells
}
private:
std::vector<std::vector<int> > wells_;
};
} // end namespace OPM
#endif