2021-06-03 08:34:14 -05:00
|
|
|
/*
|
|
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/simulators/wells/MultisegmentWellGeneric.hpp>
|
|
|
|
|
|
|
|
#include <opm/common/utility/numeric/RootFinders.hpp>
|
|
|
|
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/VFPInjTable.hpp>
|
|
|
|
|
|
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
#include <opm/simulators/wells/VFPHelpers.hpp>
|
|
|
|
#include <opm/simulators/wells/VFPProperties.hpp>
|
|
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
|
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
|
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
#include <cmath>
|
|
|
|
#include <stdexcept>
|
|
|
|
|
|
|
|
namespace Opm
|
|
|
|
{
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
MultisegmentWellGeneric(WellInterfaceGeneric& baseif)
|
|
|
|
: baseif_(baseif)
|
|
|
|
, segment_perforations_(numberOfSegments())
|
|
|
|
, segment_inlets_(numberOfSegments())
|
|
|
|
, segment_depth_diffs_(numberOfSegments(), 0.0)
|
|
|
|
, perforation_segment_depth_diffs_(baseif_.numPerfs(), 0.0)
|
|
|
|
{
|
|
|
|
// since we decide to use the WellSegments from the well parser. we can reuse a lot from it.
|
|
|
|
// for other facilities needed but not available from parser, we need to process them here
|
|
|
|
|
|
|
|
// initialize the segment_perforations_ and update perforation_segment_depth_diffs_
|
|
|
|
const WellConnections& completion_set = baseif_.wellEcl().getConnections();
|
|
|
|
// index of the perforation within wells struct
|
|
|
|
// there might be some perforations not active, which causes the number of the perforations in
|
|
|
|
// well_ecl_ and wells struct different
|
|
|
|
// the current implementation is a temporary solution for now, it should be corrected from the parser
|
|
|
|
// side
|
|
|
|
int i_perf_wells = 0;
|
|
|
|
baseif.perfDepth().resize(baseif_.numPerfs(), 0.);
|
|
|
|
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
|
|
|
|
const Connection& connection = completion_set.get(perf);
|
|
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
|
|
const int segment_index = segmentNumberToIndex(connection.segment());
|
|
|
|
segment_perforations_[segment_index].push_back(i_perf_wells);
|
|
|
|
baseif.perfDepth()[i_perf_wells] = connection.depth();
|
|
|
|
const double segment_depth = segmentSet()[segment_index].depth();
|
|
|
|
perforation_segment_depth_diffs_[i_perf_wells] = baseif.perfDepth()[i_perf_wells] - segment_depth;
|
|
|
|
i_perf_wells++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize the segment_inlets_
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
|
|
const Segment& segment = segmentSet()[seg];
|
|
|
|
const int segment_number = segment.segmentNumber();
|
|
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
|
|
if (outlet_segment_number > 0) {
|
|
|
|
const int segment_index = segmentNumberToIndex(segment_number);
|
|
|
|
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
|
|
|
|
segment_inlets_[outlet_segment_index].push_back(segment_index);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculating the depth difference between the segment and its oulet_segments
|
|
|
|
// for the top segment, we will make its zero unless we find other purpose to use this value
|
|
|
|
for (int seg = 1; seg < numberOfSegments(); ++seg) {
|
|
|
|
const double segment_depth = segmentSet()[seg].depth();
|
|
|
|
const int outlet_segment_number = segmentSet()[seg].outletSegment();
|
|
|
|
const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)];
|
|
|
|
const double outlet_depth = outlet_segment.depth();
|
|
|
|
segment_depth_diffs_[seg] = segment_depth - outlet_depth;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
void
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
scaleSegmentRatesWithWellRates(WellState& well_state) const
|
|
|
|
{
|
2021-08-05 05:55:18 -05:00
|
|
|
auto& ws = well_state.well(baseif_.indexOfWell());
|
|
|
|
auto& segments = ws.segments;
|
2021-06-03 08:34:14 -05:00
|
|
|
auto& segment_rates = segments.rates;
|
|
|
|
for (int phase = 0; phase < baseif_.numPhases(); ++phase) {
|
|
|
|
const double unscaled_top_seg_rate = segment_rates[phase];
|
2021-08-24 04:49:03 -05:00
|
|
|
const double well_phase_rate = ws.surface_rates[phase];
|
2021-06-03 08:34:14 -05:00
|
|
|
if (std::abs(unscaled_top_seg_rate) > 1e-12)
|
|
|
|
{
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
|
|
segment_rates[baseif_.numPhases()*seg + phase] *= well_phase_rate/unscaled_top_seg_rate;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// for newly opened wells, the unscaled rate top segment rate is zero
|
|
|
|
// and we need to initialize the segment rates differently
|
|
|
|
double sumTw = 0;
|
|
|
|
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
|
|
|
|
sumTw += baseif_.wellIndex()[perf];
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double> perforation_rates(baseif_.numPhases() * baseif_.numPerfs(),0.0);
|
2021-08-24 04:49:03 -05:00
|
|
|
const double perf_phaserate_scaled = ws.surface_rates[phase] / sumTw;
|
2021-06-03 08:34:14 -05:00
|
|
|
for (int perf = 0; perf < baseif_.numPerfs(); ++perf) {
|
|
|
|
perforation_rates[baseif_.numPhases()* perf + phase] = baseif_.wellIndex()[perf] * perf_phaserate_scaled;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double> rates;
|
|
|
|
WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, baseif_.numPhases(), 0, rates);
|
|
|
|
std::copy(rates.begin(), rates.end(), segment_rates.begin());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar>
|
|
|
|
void
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
scaleSegmentPressuresWithBhp(WellState& well_state) const
|
|
|
|
{
|
2021-08-05 05:55:18 -05:00
|
|
|
auto& ws = well_state.well(baseif_.indexOfWell());
|
|
|
|
auto& segments = ws.segments;
|
|
|
|
segments.scale_pressure(ws.bhp);
|
2021-06-03 08:34:14 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
const WellSegments&
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
segmentSet() const
|
|
|
|
{
|
|
|
|
return baseif_.wellEcl().getSegments();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar>
|
|
|
|
int
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
numberOfSegments() const
|
|
|
|
{
|
|
|
|
return segmentSet().size();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar>
|
|
|
|
WellSegments::CompPressureDrop
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
compPressureDrop() const
|
|
|
|
{
|
|
|
|
return segmentSet().compPressureDrop();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
int
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
segmentNumberToIndex(const int segment_number) const
|
|
|
|
{
|
|
|
|
return segmentSet().segmentNumberToIndex(segment_number);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
double
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
calculateThpFromBhp(const std::vector<double>& rates,
|
|
|
|
const double bhp,
|
|
|
|
const double rho,
|
|
|
|
DeferredLogger& deferred_logger) const
|
|
|
|
{
|
|
|
|
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
|
|
|
|
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
|
|
|
|
const double aqua = rates[Water];
|
|
|
|
const double liquid = rates[Oil];
|
|
|
|
const double vapour = rates[Gas];
|
|
|
|
|
|
|
|
double thp = 0.0;
|
|
|
|
if (baseif_.isInjector()) {
|
|
|
|
const int table_id = baseif_.wellEcl().vfp_table_number();
|
|
|
|
const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
|
|
|
|
|
|
|
|
thp = baseif_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
|
|
}
|
|
|
|
else if (baseif_.isProducer()) {
|
|
|
|
const int table_id = baseif_.wellEcl().vfp_table_number();
|
|
|
|
const double alq = baseif_.wellEcl().alq_value();
|
|
|
|
const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth();
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
|
|
|
|
|
|
|
|
thp = baseif_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger);
|
|
|
|
}
|
|
|
|
|
|
|
|
return thp;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
void
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
detectOscillations(const std::vector<double>& measure_history,
|
|
|
|
const int it,
|
|
|
|
bool& oscillate,
|
|
|
|
bool& stagnate) const
|
|
|
|
{
|
|
|
|
if ( it < 2 ) {
|
|
|
|
oscillate = false;
|
|
|
|
stagnate = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
stagnate = true;
|
|
|
|
const double F0 = measure_history[it];
|
|
|
|
const double F1 = measure_history[it - 1];
|
|
|
|
const double F2 = measure_history[it - 2];
|
|
|
|
const double d1 = std::abs((F0 - F2) / F0);
|
|
|
|
const double d2 = std::abs((F0 - F1) / F0);
|
|
|
|
|
|
|
|
const double oscillaton_rel_tol = 0.2;
|
|
|
|
oscillate = (d1 < oscillaton_rel_tol) && (oscillaton_rel_tol < d2);
|
|
|
|
|
|
|
|
const double stagnation_rel_tol = 1.e-2;
|
|
|
|
stagnate = std::abs((F1 - F2) / F2) <= stagnation_rel_tol;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
std::optional<double>
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
computeBhpAtThpLimitInj(const std::function<std::vector<double>(const double)>& frates,
|
|
|
|
const SummaryState& summary_state,
|
|
|
|
const double rho,
|
|
|
|
DeferredLogger& deferred_logger) const
|
|
|
|
{
|
|
|
|
// Given a VFP function returning bhp as a function of phase
|
|
|
|
// rates and thp:
|
|
|
|
// fbhp(rates, thp),
|
|
|
|
// a function extracting the particular flow rate used for VFP
|
|
|
|
// lookups:
|
|
|
|
// flo(rates)
|
|
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
|
|
// frates(bhp)
|
|
|
|
// we want to solve the equation:
|
|
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
|
|
// for bhp.
|
|
|
|
//
|
|
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
|
|
// highest rate) is returned.
|
|
|
|
//
|
|
|
|
// In order to detect these situations, we will find piecewise
|
|
|
|
// linear approximations both to the inverse of the frates
|
|
|
|
// function and to the fbhp function.
|
|
|
|
//
|
|
|
|
// We first take the FLO sample points of the VFP curve, and
|
|
|
|
// find the corresponding bhp values by solving the equation:
|
|
|
|
// flo(frates(bhp)) - flo_sample = 0
|
|
|
|
// for bhp, for each flo_sample. The resulting (flo_sample,
|
|
|
|
// bhp_sample) values give a piecewise linear approximation to
|
|
|
|
// the true inverse inflow function, at the same flo values as
|
|
|
|
// the VFP data.
|
|
|
|
//
|
|
|
|
// Then we extract a piecewise linear approximation from the
|
|
|
|
// multilinear fbhp() by evaluating it at the flo_sample
|
|
|
|
// points, with fractions given by the frates(bhp_sample)
|
|
|
|
// values.
|
|
|
|
//
|
|
|
|
// When we have both piecewise linear curves defined on the
|
|
|
|
// same flo_sample points, it is easy to distinguish between
|
|
|
|
// the 0, 1 or 2 solution cases, and obtain the right interval
|
|
|
|
// in which to solve for the solution we want (with highest
|
|
|
|
// flow in case of 2 solutions).
|
|
|
|
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
|
|
|
|
// Make the fbhp() function.
|
|
|
|
const auto& controls = baseif_.wellEcl().injectionControls(summary_state);
|
|
|
|
const auto& table = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number);
|
|
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
|
|
const double thp_limit = baseif_.getTHPConstraint(summary_state);
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
|
|
|
|
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
|
|
|
|
assert(rates.size() == 3);
|
|
|
|
return baseif_.vfpProperties()->getInj()
|
|
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Make the flo() function.
|
|
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Get the flo samples, add extra samples at low rates and bhp
|
|
|
|
// limit point if necessary.
|
|
|
|
std::vector<double> flo_samples = table.getFloAxis();
|
|
|
|
if (flo_samples[0] > 0.0) {
|
|
|
|
const double f0 = flo_samples[0];
|
|
|
|
flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 });
|
|
|
|
}
|
|
|
|
const double flo_bhp_limit = flo(frates(controls.bhp_limit));
|
|
|
|
if (flo_samples.back() < flo_bhp_limit) {
|
|
|
|
flo_samples.push_back(flo_bhp_limit);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find bhp values for inflow relation corresponding to flo samples.
|
|
|
|
std::vector<double> bhp_samples;
|
|
|
|
for (double flo_sample : flo_samples) {
|
|
|
|
if (flo_sample > flo_bhp_limit) {
|
|
|
|
// We would have to go over the bhp limit to obtain a
|
|
|
|
// flow of this magnitude. We associate all such flows
|
|
|
|
// with simply the bhp limit. The first one
|
|
|
|
// encountered is considered valid, the rest not. They
|
|
|
|
// are therefore skipped.
|
|
|
|
bhp_samples.push_back(controls.bhp_limit);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
auto eq = [&flo, &frates, flo_sample](double bhp) {
|
|
|
|
return flo(frates(bhp)) - flo_sample;
|
|
|
|
};
|
|
|
|
// TODO: replace hardcoded low/high limits.
|
|
|
|
const double low = 10.0 * unit::barsa;
|
|
|
|
const double high = 800.0 * unit::barsa;
|
|
|
|
const int max_iteration = 100;
|
|
|
|
const double flo_tolerance = 0.05 * std::fabs(flo_samples.back());
|
|
|
|
int iteration = 0;
|
|
|
|
try {
|
|
|
|
const double solved_bhp = RegulaFalsiBisection<WarnAndContinueOnError>::
|
|
|
|
solve(eq, low, high, max_iteration, flo_tolerance, iteration);
|
|
|
|
bhp_samples.push_back(solved_bhp);
|
|
|
|
}
|
|
|
|
catch (...) {
|
|
|
|
// Use previous value (or max value if at start) if we failed.
|
|
|
|
bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back());
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES",
|
|
|
|
"Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find bhp values for VFP relation corresponding to flo samples.
|
|
|
|
const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size()
|
|
|
|
std::vector<double> fbhp_samples(num_samples);
|
|
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
|
|
fbhp_samples[ii] = fbhp(frates(bhp_samples[ii]));
|
|
|
|
}
|
|
|
|
// #define EXTRA_THP_DEBUGGING
|
|
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
|
|
std::string dbgmsg;
|
|
|
|
dbgmsg += "flo: ";
|
|
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
|
|
dbgmsg += " " + std::to_string(flo_samples[ii]);
|
|
|
|
}
|
|
|
|
dbgmsg += "\nbhp: ";
|
|
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
|
|
dbgmsg += " " + std::to_string(bhp_samples[ii]);
|
|
|
|
}
|
|
|
|
dbgmsg += "\nfbhp: ";
|
|
|
|
for (int ii = 0; ii < num_samples; ++ii) {
|
|
|
|
dbgmsg += " " + std::to_string(fbhp_samples[ii]);
|
|
|
|
}
|
|
|
|
OpmLog::debug(dbgmsg);
|
|
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
|
|
|
|
// Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve.
|
|
|
|
// We only look at the valid
|
|
|
|
int sign_change_index = -1;
|
|
|
|
for (int ii = 0; ii < num_samples - 1; ++ii) {
|
|
|
|
const double curr = fbhp_samples[ii] - bhp_samples[ii];
|
|
|
|
const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1];
|
|
|
|
if (curr * next < 0.0) {
|
|
|
|
// Sign change in the [ii, ii + 1] interval.
|
|
|
|
sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle the no solution case.
|
|
|
|
if (sign_change_index == -1) {
|
2021-07-01 01:59:51 -05:00
|
|
|
return std::nullopt;
|
2021-06-03 08:34:14 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
|
|
return fbhp(frates(bhp)) - bhp;
|
|
|
|
};
|
|
|
|
// TODO: replace hardcoded low/high limits.
|
|
|
|
const double low = bhp_samples[sign_change_index + 1];
|
|
|
|
const double high = bhp_samples[sign_change_index];
|
|
|
|
const int max_iteration = 100;
|
|
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
|
|
int iteration = 0;
|
|
|
|
if (low == high) {
|
|
|
|
// We are in the high flow regime where the bhp_samples
|
|
|
|
// are all equal to the bhp_limit.
|
|
|
|
assert(low == controls.bhp_limit);
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
2021-07-01 01:59:51 -05:00
|
|
|
return std::nullopt;
|
2021-06-03 08:34:14 -05:00
|
|
|
}
|
|
|
|
try {
|
|
|
|
const double solved_bhp = RegulaFalsiBisection<WarnAndContinueOnError>::
|
|
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
|
|
#ifdef EXTRA_THP_DEBUGGING
|
|
|
|
OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp)
|
|
|
|
+ " flo_bhp_limit = " + std::to_string(flo_bhp_limit));
|
|
|
|
#endif // EXTRA_THP_DEBUGGING
|
|
|
|
return solved_bhp;
|
|
|
|
}
|
|
|
|
catch (...) {
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
2021-07-01 01:59:51 -05:00
|
|
|
return std::nullopt;
|
2021-06-03 08:34:14 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
std::optional<double>
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
computeBhpAtThpLimitProd(const std::function<std::vector<double>(const double)>& frates,
|
|
|
|
const SummaryState& summary_state,
|
|
|
|
const double maxPerfPress,
|
|
|
|
const double rho,
|
|
|
|
DeferredLogger& deferred_logger) const
|
|
|
|
{
|
|
|
|
// Given a VFP function returning bhp as a function of phase
|
|
|
|
// rates and thp:
|
|
|
|
// fbhp(rates, thp),
|
|
|
|
// a function extracting the particular flow rate used for VFP
|
|
|
|
// lookups:
|
|
|
|
// flo(rates)
|
|
|
|
// and the inflow function (assuming the reservoir is fixed):
|
|
|
|
// frates(bhp)
|
|
|
|
// we want to solve the equation:
|
|
|
|
// fbhp(frates(bhp, thplimit)) - bhp = 0
|
|
|
|
// for bhp.
|
|
|
|
//
|
|
|
|
// This may result in 0, 1 or 2 solutions. If two solutions,
|
|
|
|
// the one corresponding to the lowest bhp (and therefore
|
|
|
|
// highest rate) should be returned.
|
|
|
|
|
|
|
|
static constexpr int Water = BlackoilPhases::Aqua;
|
|
|
|
static constexpr int Oil = BlackoilPhases::Liquid;
|
|
|
|
static constexpr int Gas = BlackoilPhases::Vapour;
|
|
|
|
|
|
|
|
// Make the fbhp() function.
|
|
|
|
const auto& controls = baseif_.wellEcl().productionControls(summary_state);
|
|
|
|
const auto& table = baseif_.vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
|
|
const double vfp_ref_depth = table.getDatumDepth();
|
|
|
|
const double thp_limit = baseif_.getTHPConstraint(summary_state);
|
|
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, rho, baseif_.gravity());
|
|
|
|
auto fbhp = [this, &controls, thp_limit, dp](const std::vector<double>& rates) {
|
|
|
|
assert(rates.size() == 3);
|
|
|
|
return baseif_.vfpProperties()->getProd()
|
|
|
|
->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit, controls.alq_value) - dp;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Make the flo() function.
|
|
|
|
auto flo = [&table](const std::vector<double>& rates) {
|
|
|
|
return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Find the bhp-point where production becomes nonzero.
|
|
|
|
double bhp_max = 0.0;
|
|
|
|
{
|
|
|
|
auto fflo = [&flo, &frates](double bhp) { return flo(frates(bhp)); };
|
|
|
|
double low = controls.bhp_limit;
|
|
|
|
double high = maxPerfPress + 1.0 * unit::barsa;
|
|
|
|
double f_low = fflo(low);
|
|
|
|
double f_high = fflo(high);
|
|
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + baseif_.name() +
|
|
|
|
" low = " + std::to_string(low) +
|
|
|
|
" high = " + std::to_string(high) +
|
|
|
|
" f(low) = " + std::to_string(f_low) +
|
|
|
|
" f(high) = " + std::to_string(f_high));
|
|
|
|
int adjustments = 0;
|
|
|
|
const int max_adjustments = 10;
|
|
|
|
const double adjust_amount = 5.0 * unit::barsa;
|
|
|
|
while (f_low * f_high > 0.0 && adjustments < max_adjustments) {
|
|
|
|
// Same sign, adjust high to see if we can flip it.
|
|
|
|
high += adjust_amount;
|
|
|
|
f_high = fflo(high);
|
|
|
|
++adjustments;
|
|
|
|
}
|
|
|
|
if (f_low * f_high > 0.0) {
|
|
|
|
if (f_low > 0.0) {
|
|
|
|
// Even at the BHP limit, we are injecting.
|
|
|
|
// There will be no solution here, return an
|
|
|
|
// empty optional.
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_INOPERABLE",
|
|
|
|
"Robust bhp(thp) solve failed due to inoperability for well " + baseif_.name());
|
|
|
|
return std::optional<double>();
|
|
|
|
} else {
|
|
|
|
// Still producing, even at high bhp.
|
|
|
|
assert(f_high < 0.0);
|
|
|
|
bhp_max = high;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Bisect to find a bhp point where we produce, but
|
|
|
|
// not a large amount ('eps' below).
|
|
|
|
const double eps = 0.1 * std::fabs(table.getFloAxis().front());
|
|
|
|
const int maxit = 50;
|
|
|
|
int it = 0;
|
|
|
|
while (std::fabs(f_low) > eps && it < maxit) {
|
|
|
|
const double curr = 0.5*(low + high);
|
|
|
|
const double f_curr = fflo(curr);
|
|
|
|
if (f_curr * f_low > 0.0) {
|
|
|
|
low = curr;
|
|
|
|
f_low = f_curr;
|
|
|
|
} else {
|
|
|
|
high = curr;
|
|
|
|
f_high = f_curr;
|
|
|
|
}
|
|
|
|
++it;
|
|
|
|
}
|
|
|
|
bhp_max = low;
|
|
|
|
}
|
|
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + baseif_.name() +
|
|
|
|
" low = " + std::to_string(low) +
|
|
|
|
" high = " + std::to_string(high) +
|
|
|
|
" f(low) = " + std::to_string(f_low) +
|
|
|
|
" f(high) = " + std::to_string(f_high) +
|
|
|
|
" bhp_max = " + std::to_string(bhp_max));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Define the equation we want to solve.
|
|
|
|
auto eq = [&fbhp, &frates](double bhp) {
|
|
|
|
return fbhp(frates(bhp)) - bhp;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Find appropriate brackets for the solution.
|
|
|
|
double low = controls.bhp_limit;
|
|
|
|
double high = bhp_max;
|
|
|
|
{
|
|
|
|
double eq_high = eq(high);
|
|
|
|
double eq_low = eq(low);
|
|
|
|
const double eq_bhplimit = eq_low;
|
|
|
|
deferred_logger.debug("computeBhpAtThpLimitProd(): well = " + baseif_.name() +
|
|
|
|
" low = " + std::to_string(low) +
|
|
|
|
" high = " + std::to_string(high) +
|
|
|
|
" eq(low) = " + std::to_string(eq_low) +
|
|
|
|
" eq(high) = " + std::to_string(eq_high));
|
|
|
|
if (eq_low * eq_high > 0.0) {
|
|
|
|
// Failed to bracket the zero.
|
|
|
|
// If this is due to having two solutions, bisect until bracketed.
|
|
|
|
double abs_low = std::fabs(eq_low);
|
|
|
|
double abs_high = std::fabs(eq_high);
|
|
|
|
int bracket_attempts = 0;
|
|
|
|
const int max_bracket_attempts = 20;
|
|
|
|
double interval = high - low;
|
|
|
|
const double min_interval = 1.0 * unit::barsa;
|
|
|
|
while (eq_low * eq_high > 0.0 && bracket_attempts < max_bracket_attempts && interval > min_interval) {
|
|
|
|
if (abs_high < abs_low) {
|
|
|
|
low = 0.5 * (low + high);
|
|
|
|
eq_low = eq(low);
|
|
|
|
abs_low = std::fabs(eq_low);
|
|
|
|
} else {
|
|
|
|
high = 0.5 * (low + high);
|
|
|
|
eq_high = eq(high);
|
|
|
|
abs_high = std::fabs(eq_high);
|
|
|
|
}
|
|
|
|
++bracket_attempts;
|
|
|
|
}
|
|
|
|
if (eq_low * eq_high > 0.0) {
|
|
|
|
// Still failed bracketing!
|
|
|
|
const double limit = 3.0 * unit::barsa;
|
|
|
|
if (std::min(abs_low, abs_high) < limit) {
|
|
|
|
// Return the least bad solution if less off than 3 bar.
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
|
|
"Robust bhp(thp) not solved precisely for well " + baseif_.name());
|
|
|
|
return abs_low < abs_high ? low : high;
|
|
|
|
} else {
|
|
|
|
// Return failure.
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_BRACKETING_FAILURE",
|
|
|
|
"Robust bhp(thp) solve failed due to bracketing failure for well " + baseif_.name());
|
2021-07-01 01:59:51 -05:00
|
|
|
return std::nullopt;
|
2021-06-03 08:34:14 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// We have a bracket!
|
|
|
|
// Now, see if (bhplimit, low) is a bracket in addition to (low, high).
|
|
|
|
// If so, that is the bracket we shall use, choosing the solution with the
|
|
|
|
// highest flow.
|
|
|
|
if (eq_low * eq_bhplimit <= 0.0) {
|
|
|
|
high = low;
|
|
|
|
low = controls.bhp_limit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Solve for the proper solution in the given interval.
|
|
|
|
const int max_iteration = 100;
|
|
|
|
const double bhp_tolerance = 0.01 * unit::barsa;
|
|
|
|
int iteration = 0;
|
|
|
|
try {
|
|
|
|
const double solved_bhp = RegulaFalsiBisection<ThrowOnError>::
|
|
|
|
solve(eq, low, high, max_iteration, bhp_tolerance, iteration);
|
|
|
|
return solved_bhp;
|
|
|
|
}
|
|
|
|
catch (...) {
|
|
|
|
deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE",
|
|
|
|
"Robust bhp(thp) solve failed for well " + baseif_.name());
|
2021-07-01 01:59:51 -05:00
|
|
|
return std::nullopt;
|
2021-06-03 08:34:14 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
bool
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
frictionalPressureLossConsidered() const
|
|
|
|
{
|
|
|
|
// HF- and HFA needs to consider frictional pressure loss
|
|
|
|
return (segmentSet().compPressureDrop() != WellSegments::CompPressureDrop::H__);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Scalar>
|
|
|
|
bool
|
|
|
|
MultisegmentWellGeneric<Scalar>::
|
|
|
|
accelerationalPressureLossConsidered() const
|
|
|
|
{
|
|
|
|
return (segmentSet().compPressureDrop() == WellSegments::CompPressureDrop::HFA);
|
|
|
|
}
|
|
|
|
|
|
|
|
template class MultisegmentWellGeneric<double>;
|
|
|
|
|
|
|
|
} // namespace Opm
|