Merge pull request #536 from atgeirr/refactor-nonlinear

Refactor nonlinear solver
This commit is contained in:
Bård Skaflestad 2015-11-18 11:47:43 +01:00
commit 022bd6b8fe
9 changed files with 184 additions and 111 deletions

View File

@ -126,8 +126,8 @@ list (APPEND PUBLIC_HEADER_FILES
opm/autodiff/NewtonIterationBlackoilInterleaved.hpp
opm/autodiff/NewtonIterationBlackoilSimple.hpp
opm/autodiff/NewtonIterationUtilities.hpp
opm/autodiff/NewtonSolver.hpp
opm/autodiff/NewtonSolver_impl.hpp
opm/autodiff/NonlinearSolver.hpp
opm/autodiff/NonlinearSolver_impl.hpp
opm/autodiff/LinearisedBlackoilResidual.hpp
opm/autodiff/ParallelDebugOutput.hpp
opm/autodiff/RateConverter.hpp

View File

@ -76,6 +76,17 @@ namespace Opm {
/// Class used for reporting the outcome of a nonlinearIteration() call.
struct IterationReport
{
bool failed;
bool converged;
int linear_iterations;
};
/// Traits to encapsulate the types used by classes using or
/// extending this model. Forward declared here, must be
/// specialised for each concrete model class.
@ -155,6 +166,22 @@ namespace Opm {
ReservoirState& reservoir_state,
WellState& well_state);
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] dt time step size
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
template <class NonlinearSolverType>
IterationReport nonlinearIteration(const int iteration,
const double dt,
NonlinearSolverType& nonlinear_solver,
ReservoirState& reservoir_state,
WellState& well_state);
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] dt time step size
@ -290,6 +317,9 @@ namespace Opm {
std::vector<int> primalVariable_;
V pvdt_;
std::vector<std::string> material_name_;
std::vector<std::vector<double>> residual_norms_history_;
double current_relaxation_;
V dx_old_;
// --------- Protected methods ---------

View File

@ -180,6 +180,7 @@ namespace detail {
{ 1.1169, 1.0031, 0.0031 }} ) // the default magic numbers
, terminal_output_ (terminal_output)
, material_name_{ "Water", "Oil", "Gas" }
, current_relaxation_(1.0)
{
assert(numMaterials() == 3); // Due to the material_name_ init above.
#if HAVE_MPI
@ -227,6 +228,56 @@ namespace detail {
template <class Grid, class Implementation>
template <class NonlinearSolverType>
IterationReport
BlackoilModelBase<Grid, Implementation>::
nonlinearIteration(const int iteration,
const double dt,
NonlinearSolverType& nonlinear_solver,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = V::Zero(sizeNonLinear());
}
assemble(reservoir_state, well_state, iteration == 0);
residual_norms_history_.push_back(computeResidualNorms());
const bool converged = getConvergence(dt, iteration);
if (!converged) {
V dx = solveJacobianSystem();
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::cout << " Oscillating behavior detected: Relaxation set to "
<< current_relaxation_ << std::endl;
}
}
nonlinear_solver.stabilizeNonlinearUpdate(dx, dx_old_, current_relaxation_);
// Apply the update, applying model-dependent
// limitations and chopping of the update.
updateState(dx, reservoir_state, well_state);
}
const bool failed = false; // Not needed in this model.
const int linear_iters = converged ? 0 : linearIterationsLastSolve();
return IterationReport{ failed, converged, linear_iters };
}
template <class Grid, class Implementation>
void
BlackoilModelBase<Grid, Implementation>::

View File

@ -18,8 +18,8 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_NEWTONSOLVER_HEADER_INCLUDED
#define OPM_NEWTONSOLVER_HEADER_INCLUDED
#ifndef OPM_NONLINEARSOLVER_HEADER_INCLUDED
#define OPM_NONLINEARSOLVER_HEADER_INCLUDED
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
@ -28,9 +28,10 @@
namespace Opm {
/// A Newton solver class suitable for general fully-implicit models.
/// A nonlinear solver class suitable for general fully-implicit models,
/// as well as pressure, transport and sequential models.
template <class PhysicalModel>
class NewtonSolver
class NonlinearSolver
{
public:
// --------- Types and enums ---------
@ -38,18 +39,18 @@ namespace Opm {
typedef ADB::V V;
typedef ADB::M M;
// The Newton relaxation scheme type
// Available relaxation scheme types.
enum RelaxType { DAMPEN, SOR };
// Solver parameters controlling nonlinear Newton process.
// Solver parameters controlling nonlinear process.
struct SolverParameters
{
enum RelaxType relax_type_;
double relax_max_;
double relax_increment_;
double relax_rel_tol_;
int max_iter_; // max newton iterations
int min_iter_; // min newton iterations
int max_iter_; // max nonlinear iterations
int min_iter_; // min nonlinear iterations
explicit SolverParameters( const parameter::ParameterGroup& param );
SolverParameters();
@ -66,11 +67,11 @@ namespace Opm {
/// Construct solver for a given model.
///
/// The model is a std::unique_ptr because the object to which model points to is
/// not allowed to be deleted as long as the NewtonSolver object exists.
/// not allowed to be deleted as long as the NonlinearSolver object exists.
///
/// \param[in] param parameters controlling nonlinear Newton process
/// \param[in] param parameters controlling nonlinear process
/// \param[in, out] model physical simulation model.
explicit NewtonSolver(const SolverParameters& param,
explicit NonlinearSolver(const SolverParameters& param,
std::unique_ptr<PhysicalModel> model);
/// Take a single forward step, after which the states will be modified
@ -84,44 +85,51 @@ namespace Opm {
ReservoirState& reservoir_state,
WellState& well_state);
/// Number of Newton iterations used in all calls to step().
unsigned int newtonIterations() const;
/// Number of nonlinear solver iterations used in all calls to step().
unsigned int nonlinearIterations() const;
/// Number of linear solver iterations used in all calls to step().
unsigned int linearIterations() const;
/// Number of linear solver iterations used in the last call to step().
unsigned int newtonIterationsLastStep() const;
/// Number of nonlinear solver iterations used in the last call to step().
unsigned int nonlinearIterationsLastStep() const;
/// Number of linear solver iterations used in the last call to step().
unsigned int linearIterationsLastStep() const;
/// return reference to physical model
/// Reference to physical model.
const PhysicalModel& model() const;
/// Detect oscillation or stagnation in a given residual history.
void detectOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, bool& oscillate, bool& stagnate) const;
/// Apply a stabilization to dx, depending on dxOld and relaxation parameters.
void stabilizeNonlinearUpdate(V& dx, V& dxOld, const double omega) const;
/// The greatest relaxation factor (i.e. smallest factor) allowed.
double relaxMax() const { return param_.relax_max_; }
/// The step-change size for the relaxation factor.
double relaxIncrement() const { return param_.relax_increment_; }
private:
// --------- Data members ---------
SolverParameters param_;
std::unique_ptr<PhysicalModel> model_;
unsigned int newtonIterations_;
unsigned int nonlinearIterations_;
unsigned int linearIterations_;
unsigned int newtonIterationsLast_;
unsigned int nonlinearIterationsLast_;
unsigned int linearIterationsLast_;
// --------- Private methods ---------
enum RelaxType relaxType() const { return param_.relax_type_; }
double relaxMax() const { return param_.relax_max_; }
double relaxIncrement() const { return param_.relax_increment_; }
double relaxRelTol() const { return param_.relax_rel_tol_; }
double maxIter() const { return param_.max_iter_; }
double minIter() const { return param_.min_iter_; }
void detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const;
void stabilizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const;
};
} // namespace Opm
#include "NewtonSolver_impl.hpp"
#include "NonlinearSolver_impl.hpp"
#endif // OPM_NEWTONSOLVER_HEADER_INCLUDED
#endif // OPM_NONLINEARSOLVER_HEADER_INCLUDED

View File

@ -20,45 +20,62 @@
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_NEWTONSOLVER_IMPL_HEADER_INCLUDED
#define OPM_NEWTONSOLVER_IMPL_HEADER_INCLUDED
#ifndef OPM_NONLINEARSOLVER_IMPL_HEADER_INCLUDED
#define OPM_NONLINEARSOLVER_IMPL_HEADER_INCLUDED
#include <opm/autodiff/NewtonSolver.hpp>
#include <opm/autodiff/NonlinearSolver.hpp>
namespace Opm
{
template <class PhysicalModel>
NewtonSolver<PhysicalModel>::NewtonSolver(const SolverParameters& param,
std::unique_ptr<PhysicalModel> model)
NonlinearSolver<PhysicalModel>::NonlinearSolver(const SolverParameters& param,
std::unique_ptr<PhysicalModel> model)
: param_(param),
model_(std::move(model)),
newtonIterations_(0),
linearIterations_(0)
nonlinearIterations_(0),
linearIterations_(0),
nonlinearIterationsLast_(0),
linearIterationsLast_(0)
{
if (!model_) {
OPM_THROW(std::logic_error, "Must provide a non-null model argument for NonlinearSolver.");
}
}
template <class PhysicalModel>
unsigned int NewtonSolver<PhysicalModel>::newtonIterations () const
unsigned int NonlinearSolver<PhysicalModel>::nonlinearIterations() const
{
return newtonIterations_;
return nonlinearIterations_;
}
template <class PhysicalModel>
unsigned int NewtonSolver<PhysicalModel>::linearIterations () const
unsigned int NonlinearSolver<PhysicalModel>::linearIterations() const
{
return linearIterations_;
}
template <class PhysicalModel>
const PhysicalModel& NewtonSolver<PhysicalModel>::model() const
const PhysicalModel& NonlinearSolver<PhysicalModel>::model() const
{
assert( model_ );
return *model_;
}
template <class PhysicalModel>
unsigned int NonlinearSolver<PhysicalModel>::nonlinearIterationsLastStep() const
{
return nonlinearIterationsLast_;
}
template <class PhysicalModel>
unsigned int NonlinearSolver<PhysicalModel>::linearIterationsLastStep() const
{
return linearIterationsLast_;
}
template <class PhysicalModel>
int
NewtonSolver<PhysicalModel>::
NonlinearSolver<PhysicalModel>::
step(const double dt,
ReservoirState& reservoir_state,
WellState& well_state)
@ -66,57 +83,27 @@ namespace Opm
// Do model-specific once-per-step calculations.
model_->prepareStep(dt, reservoir_state, well_state);
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
std::vector<std::vector<double>> residual_norms_history;
// Assemble residual and Jacobian, store residual norms.
model_->assemble(reservoir_state, well_state, true);
residual_norms_history.push_back(model_->computeResidualNorms());
// Set up for main Newton loop.
double omega = 1.0;
int iteration = 0;
bool converged = model_->getConvergence(dt, iteration);
const int sizeNonLinear = model_->sizeNonLinear();
V dxOld = V::Zero(sizeNonLinear);
bool isOscillate = false;
bool isStagnate = false;
const enum RelaxType relaxtype = relaxType();
// Let the model do one nonlinear iteration.
// Set up for main solver loop.
int linIters = 0;
bool converged = false;
// ---------- Main Newton loop ----------
while ( (!converged && (iteration < maxIter())) || (minIter() > iteration)) {
// Compute the Newton update to the primary variables.
V dx = model_->solveJacobianSystem();
// Store number of linear iterations used.
linIters += model_->linearIterationsLastSolve();
// Stabilize the Newton update.
detectNewtonOscillations(residual_norms_history, iteration, relaxRelTol(), isOscillate, isStagnate);
if (isOscillate) {
omega -= relaxIncrement();
omega = std::max(omega, relaxMax());
if (model_->terminalOutputEnabled()) {
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
}
// ---------- Main nonlinear solver loop ----------
do {
IterationReport report = model_->nonlinearIteration(iteration, dt, *this, reservoir_state, well_state);
if (report.failed) {
OPM_THROW(Opm::NumericalProblem, "Failed to complete a nonlinear iteration.");
}
stabilizeNewton(dx, dxOld, omega, relaxtype);
// Apply the update, the model may apply model-dependent
// limitations and chopping of the update.
model_->updateState(dx, reservoir_state, well_state);
// Assemble residual and Jacobian, store residual norms.
model_->assemble(reservoir_state, well_state, false);
residual_norms_history.push_back(model_->computeResidualNorms());
// increase iteration counter
if (report.converged) {
assert(report.linear_iterations == 0);
converged = true;
}
linIters += report.linear_iterations;
++iteration;
converged = model_->getConvergence(dt, iteration);
}
} while ( (!converged && (iteration <= maxIter())) || (minIter() > iteration));
if (!converged) {
if (model_->terminalOutputEnabled()) {
@ -126,9 +113,9 @@ namespace Opm
}
linearIterations_ += linIters;
newtonIterations_ += iteration;
nonlinearIterations_ += iteration - 1; // Since the last one will always be trivial.
linearIterationsLast_ = linIters;
newtonIterationsLast_ = iteration;
nonlinearIterationsLast_ = iteration;
// Do model-specific post-step actions.
model_->afterStep(dt, reservoir_state, well_state);
@ -139,7 +126,7 @@ namespace Opm
template <class PhysicalModel>
void NewtonSolver<PhysicalModel>::SolverParameters::
void NonlinearSolver<PhysicalModel>::SolverParameters::
reset()
{
// default values for the solver parameters
@ -152,7 +139,7 @@ namespace Opm
}
template <class PhysicalModel>
NewtonSolver<PhysicalModel>::SolverParameters::
NonlinearSolver<PhysicalModel>::SolverParameters::
SolverParameters()
{
// set default values
@ -160,7 +147,7 @@ namespace Opm
}
template <class PhysicalModel>
NewtonSolver<PhysicalModel>::SolverParameters::
NonlinearSolver<PhysicalModel>::SolverParameters::
SolverParameters( const parameter::ParameterGroup& param )
{
// set default values
@ -183,9 +170,9 @@ namespace Opm
template <class PhysicalModel>
void
NewtonSolver<PhysicalModel>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol_arg,
bool& oscillate, bool& stagnate) const
NonlinearSolver<PhysicalModel>::detectOscillations(const std::vector<std::vector<double>>& residual_history,
const int it,
bool& oscillate, bool& stagnate) const
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
@ -207,7 +194,7 @@ namespace Opm
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
oscillatePhase += (d1 < relaxRelTol_arg) && (relaxRelTol_arg < d2);
oscillatePhase += (d1 < relaxRelTol()) && (relaxRelTol() < d2);
// Process is 'stagnate' unless at least one phase
// exhibits significant residual change.
@ -220,8 +207,7 @@ namespace Opm
template <class PhysicalModel>
void
NewtonSolver<PhysicalModel>::stabilizeNewton(V& dx, V& dxOld, const double omega,
const RelaxType relax_type) const
NonlinearSolver<PhysicalModel>::stabilizeNonlinearUpdate(V& dx, V& dxOld, const double omega) const
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
@ -229,7 +215,7 @@ namespace Opm
const V tempDxOld = dxOld;
dxOld = dx;
switch (relax_type) {
switch (relaxType()) {
case DAMPEN:
if (omega == 1.) {
return;

View File

@ -26,7 +26,6 @@
#include <opm/common/ErrorMacros.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/NewtonSolver.hpp>
#include <opm/autodiff/BlackoilModel.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>

View File

@ -106,7 +106,7 @@ namespace Opm
output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep );
}
unsigned int totalNewtonIterations = 0;
unsigned int totalNonlinearIterations = 0;
unsigned int totalLinearIterations = 0;
// Main simulation loop.
@ -167,8 +167,8 @@ namespace Opm
// take time that was used to solve system for this reportStep
solver_timer.stop();
// accumulate the number of Newton and Linear Iterations
totalNewtonIterations += solver->newtonIterations();
// accumulate the number of nonlinear and linear Iterations
totalNonlinearIterations += solver->nonlinearIterations();
totalLinearIterations += solver->linearIterations();
// Report timing.
@ -201,7 +201,7 @@ namespace Opm
report.pressure_time = stime;
report.transport_time = 0.0;
report.total_time = total_timer.secsSinceStart();
report.total_newton_iterations = totalNewtonIterations;
report.total_newton_iterations = totalNonlinearIterations;
report.total_linear_iterations = totalLinearIterations;
return report;
}

View File

@ -1,5 +1,5 @@
/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
@ -21,9 +21,8 @@
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include "SimulatorBase.hpp"
#include "NewtonSolver.hpp"
#include <opm/autodiff/SimulatorBase.hpp>
#include <opm/autodiff/NonlinearSolver.hpp>
namespace Opm {
@ -38,7 +37,7 @@ struct SimulatorTraits<SimulatorFullyImplicitBlackoil<GridT> >
typedef BlackoilOutputWriter OutputWriter;
typedef GridT Grid;
typedef BlackoilModel<Grid> Model;
typedef NewtonSolver<Model> Solver;
typedef NonlinearSolver<Model> Solver;
};
/// a simulator for the blackoil model

View File

@ -32,7 +32,7 @@
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/SolventPropsAdFromDeck.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/NewtonSolver.hpp>
#include <opm/autodiff/NonlinearSolver.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoilSolvent.hpp>
#include <opm/core/grid.h>
@ -88,7 +88,7 @@ namespace Opm
typedef BlackoilOutputWriter OutputWriter;
typedef GridT Grid;
typedef BlackoilSolventModel<Grid> Model;
typedef NewtonSolver<Model> Solver;
typedef NonlinearSolver<Model> Solver;
};
/// Class collecting all necessary components for a blackoil simulation with polymer