Put creation of elliptic system in separate function.

This commit is contained in:
Atgeirr Flø Rasmussen 2014-05-20 14:24:24 +02:00
parent b823324e59
commit 023a46fa12

View File

@ -82,6 +82,19 @@ namespace Opm
/// \return true if matrix is diagonal
bool isDiagonal(const M& matrix);
/// Form an elliptic system of equations.
/// \param[in] num_phases the number of fluid phases
/// \param[in] eqs the equations
/// \param[out] A the resulting full system matrix
/// \param[out] b the right hand side
/// This function will deal with the first num_phases
/// equations in eqs, and return a matrix A for the full
/// system that has a elliptic upper left corner, if possible.
void formEllipticSystem(const int num_phases,
const std::vector<ADB>& eqs,
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
V& b);
/// Create a dune-istl matrix from an Eigen matrix.
/// \param[in] matrix input Eigen::SparseMatrix
/// \return output Dune::BCRSMatrix
@ -140,41 +153,34 @@ namespace Opm
eqs[phase] = eqs[phase] * matbalscale[phase];
}
// Add material balance equations to form pressure equation
// in place of first balance equation.
for (int phase = 1; phase < np; ++phase) {
eqs[0] += eqs[phase];
}
// Add material balance equations (or other manipulations) to
// form pressure equation in top left of full system.
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
V b;
formEllipticSystem(np, eqs, A, b);
// Scale pressure equation.
const double pscale = 200*unit::barsa;
eqs[0] = eqs[0] * pscale;
// Combine in single block.
ADB total_residual = eqs[0];
for (int phase = 1; phase < np; ++phase) {
total_residual = vertcat(total_residual, eqs[phase]);
}
total_residual = collapseJacs(total_residual);
const int nc = residual.material_balance_eq[0].size();
A.topRows(nc) *= pscale;
b.topRows(nc) *= pscale;
// Solve reduced system.
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
SolutionVector dx(SolutionVector::Zero(total_residual.size()));
SolutionVector dx(SolutionVector::Zero(b.size()));
// Create ISTL matrix.
Mat A = makeIstlMatrix(matr);
Mat istlA = makeIstlMatrix(A);
// Create ISTL matrix for elliptic part.
const int nc = residual.material_balance_eq[0].size();
Mat Ae = makeIstlMatrix(matr.topLeftCorner(nc, nc));
Mat istlAe = makeIstlMatrix(A.topLeftCorner(nc, nc));
// Construct operator, scalar product and vectors needed.
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
Operator opA(A);
Operator opA(istlA);
Dune::SeqScalarProduct<Vector> sp;
// Right hand side.
Vector b(opA.getmat().N());
std::copy_n(total_residual.value().data(), b.size(), b.begin());
Vector istlb(opA.getmat().N());
std::copy_n(b.data(), istlb.size(), istlb.begin());
// System solution
Vector x(opA.getmat().M());
x = 0.0;
@ -183,7 +189,7 @@ namespace Opm
// typedef Dune::SeqILU0<Mat,Vector,Vector> Preconditioner;
typedef Opm::CPRPreconditioner<Mat,Vector,Vector> Preconditioner;
const double relax = 1.0;
Preconditioner precond(A, Ae, relax);
Preconditioner precond(istlA, istlAe, relax);
// Construct linear solver.
const double tolerance = 1e-3;
@ -194,7 +200,7 @@ namespace Opm
// Solve system.
Dune::InverseOperatorResult result;
linsolve.apply(x, b, result);
linsolve.apply(x, istlb, result);
// Check for failure of linear solver.
if (!result.converged) {
@ -352,6 +358,108 @@ namespace Opm
/// Form an elliptic system of equations.
/// \param[in] num_phases the number of fluid phases
/// \param[in] eqs the equations
/// \param[out] A the resulting full system matrix
/// \param[out] b the right hand side
/// This function will deal with the first num_phases
/// equations in eqs, and return a matrix A for the full
/// system that has a elliptic upper left corner, if possible.
void formEllipticSystem(const int num_phases,
const std::vector<ADB>& eqs_in,
Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
V& b)
{
if (num_phases != 3) {
OPM_THROW(std::logic_error, "formEllipticSystem() requires 3 phases for now.");
}
// A concession to MRST, to obtain more similar behaviour:
// swap the first two equations, so that oil is first, then water.
auto eqs = eqs_in;
std::swap(eqs[0], eqs[1]);
// Characterize the material balance equations.
const int n = eqs[0].size();
const double ratio_limit = 0.01;
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic> Block;
// The l1 block indicates if the equation for a given cell and phase is
// sufficiently strong on the diagonal.
Block l1 = Block::Zero(n, num_phases);
for (int phase = 0; phase < num_phases; ++phase) {
const M& J = eqs[phase].derivative()[0];
V dj = J.diagonal().cwiseAbs();
V sod = V::Zero(n);
for (int elem = 0; elem < n; ++elem) {
sod(elem) = J.col(elem).cwiseAbs().sum() - dj(elem);
}
l1.col(phase) = (dj/sod > ratio_limit).cast<double>();
}
// By default, replace first equation with sum of all phase equations.
// Build helper vectors.
V l21 = V::Zero(n);
V l22 = V::Ones(n);
V l31 = V::Zero(n);
V l33 = V::Ones(n);
// If the first phase diagonal is not strong enough, we need further treatment.
// Then the first equation will be the sum of the remaining equations,
// and we swap the first equation into one of their slots.
for (int elem = 0; elem < n; ++elem) {
if (!l1(elem, 0)) {
const double l12x = l1(elem, 1);
const double l13x = l1(elem, 2);
const bool allzero = (l12x + l13x == 0);
if (allzero) {
l1(elem, 0) = 1;
} else {
if (l12x >= l13x) {
l21(elem) = 1;
l22(elem) = 0;
} else {
l31(elem) = 1;
l33(elem) = 0;
}
}
}
}
// Construct the sparse matrix L that does the swaps and sums.
Span i1(n, 1, 0);
Span i2(n, 1, n);
Span i3(n, 1, 2*n);
std::vector< Eigen::Triplet<double> > t;
t.reserve(7*n);
for (int ii = 0; ii < n; ++ii) {
t.emplace_back(i1[ii], i1[ii], l1(ii));
t.emplace_back(i1[ii], i2[ii], l1(ii+n));
t.emplace_back(i1[ii], i3[ii], l1(ii+2*n));
t.emplace_back(i2[ii], i1[ii], l21(ii));
t.emplace_back(i2[ii], i2[ii], l22(ii));
t.emplace_back(i3[ii], i1[ii], l31(ii));
t.emplace_back(i3[ii], i3[ii], l33(ii));
}
M L(3*n, 3*n);
L.setFromTriplets(t.begin(), t.end());
// Combine in single block.
ADB total_residual = eqs[0];
for (int phase = 1; phase < num_phases; ++phase) {
total_residual = vertcat(total_residual, eqs[phase]);
}
total_residual = collapseJacs(total_residual);
// Create output as product of L with equations.
A = L * total_residual.derivative()[0];
b = L * total_residual.value().matrix();
}
Mat makeIstlMatrix(const Eigen::SparseMatrix<double, Eigen::RowMajor>& matrix)
{
// Create ISTL matrix.