mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-18 21:43:27 -06:00
Merge branch 'master' into nonuniform_fluid_tables
Conflicts: Makefile.am opm/core/fluid/BlackoilPropertiesFromDeck.hpp opm/core/fluid/SaturationPropsFromDeck.cpp opm/core/fluid/SaturationPropsFromDeck.hpp opm/core/fluid/blackoil/BlackoilPvtProperties.cpp opm/core/fluid/blackoil/BlackoilPvtProperties.hpp opm/core/fluid/blackoil/SinglePvtDead.cpp This merge combines three more-or-less orthogonal features for saturation tables: the option to use StoneII or Simple three-phase behaviour, the option to fit a spline or not, and finally setting the number of samples used (if spline fitting). Interfaces have changed, the most top-level one being that BlackoilPropertiesFromDeck::init() now also takes a ParameterGroup argument.
This commit is contained in:
commit
03f6f43160
@ -18,33 +18,71 @@
|
||||
*/
|
||||
|
||||
#include <opm/core/fluid/BlackoilPropertiesFromDeck.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
const bool use_spline)
|
||||
const UnstructuredGrid& grid)
|
||||
{
|
||||
rock_.init(deck, grid);
|
||||
pvt_.init(deck, use_spline);
|
||||
// Unfortunate lack of pointer smartness here...
|
||||
if (use_spline) {
|
||||
SaturationPropsFromDeck<>* ptr = new SaturationPropsFromDeck<>();
|
||||
ptr->init(deck, grid);
|
||||
satprops_.reset(ptr);
|
||||
} else {
|
||||
SaturationPropsFromDeck<SatFuncSetNonuniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncSetNonuniform>();
|
||||
ptr->init(deck, grid);
|
||||
satprops_.reset(ptr);
|
||||
}
|
||||
pvt_.init(deck, 1025);
|
||||
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, 200);
|
||||
|
||||
if (pvt_.numPhases() != satprops_->numPhases()) {
|
||||
THROW("BlackoilPropertiesBasic::BlackoilPropertiesBasic() - Inconsistent number of phases in pvt data ("
|
||||
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
|
||||
}
|
||||
}
|
||||
|
||||
BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
const parameter::ParameterGroup& param)
|
||||
{
|
||||
rock_.init(deck, grid);
|
||||
const int pvt_samples = param.getDefault("pvt_tab_size", 200);
|
||||
pvt_.init(deck, pvt_samples);
|
||||
|
||||
// Unfortunate lack of pointer smartness here...
|
||||
const int sat_samples = param.getDefault("sat_tab_size", 200);
|
||||
std::string threephase_model = param.getDefault<std::string>("threephase_model", "simple");
|
||||
bool use_stone2 = (threephase_model == "stone2");
|
||||
if (sat_samples > 1) {
|
||||
if (use_stone2) {
|
||||
SaturationPropsFromDeck<SatFuncStone2Uniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncStone2Uniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
} else {
|
||||
SaturationPropsFromDeck<SatFuncSimpleUniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncSimpleUniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
}
|
||||
} else {
|
||||
if (use_stone2) {
|
||||
SaturationPropsFromDeck<SatFuncStone2Nonuniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncStone2Nonuniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
} else {
|
||||
SaturationPropsFromDeck<SatFuncSimpleNonuniform>* ptr
|
||||
= new SaturationPropsFromDeck<SatFuncSimpleNonuniform>();
|
||||
satprops_.reset(ptr);
|
||||
ptr->init(deck, grid, sat_samples);
|
||||
}
|
||||
}
|
||||
|
||||
if (pvt_.numPhases() != satprops_->numPhases()) {
|
||||
THROW("BlackoilPropertiesFromDeck::BlackoilPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
|
||||
}
|
||||
}
|
||||
|
||||
BlackoilPropertiesFromDeck::~BlackoilPropertiesFromDeck()
|
||||
{
|
||||
}
|
||||
|
@ -26,6 +26,7 @@
|
||||
#include <opm/core/fluid/blackoil/BlackoilPvtProperties.hpp>
|
||||
#include <opm/core/fluid/SaturationPropsFromDeck.hpp>
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <boost/scoped_ptr.hpp>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
@ -39,13 +40,26 @@ namespace Opm
|
||||
{
|
||||
public:
|
||||
/// Initialize from deck and grid.
|
||||
/// \param deck Deck input parser
|
||||
/// \param grid Grid to which property object applies, needed for the
|
||||
/// \param[in] deck Deck input parser
|
||||
/// \param[in] grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid);
|
||||
|
||||
/// Initialize from deck, grid and parameters.
|
||||
/// \param[in] deck Deck input parser
|
||||
/// \param[in] grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
/// \param[in] param Parameters. Accepted parameters include:
|
||||
/// dead_tab_size (1025) number of uniform sample points for dead-oil pvt tables.
|
||||
/// tab_size_kr (200) number of uniform sample points for saturation tables.
|
||||
/// For both parameters, a 0 or negative value indicates that no spline fitting is to
|
||||
/// be done, and the input fluid data used directly for linear interpolation.
|
||||
BlackoilPropertiesFromDeck(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid,
|
||||
const bool use_spline);
|
||||
const parameter::ParameterGroup& param);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~BlackoilPropertiesFromDeck();
|
||||
|
@ -31,7 +31,7 @@ namespace Opm
|
||||
{
|
||||
rock_.init(deck, grid);
|
||||
pvt_.init(deck);
|
||||
satprops_.init(deck, grid);
|
||||
satprops_.init(deck, grid, 200);
|
||||
if (pvt_.numPhases() != satprops_.numPhases()) {
|
||||
THROW("IncompPropertiesFromDeck::IncompPropertiesFromDeck() - Inconsistent number of phases in pvt data ("
|
||||
<< pvt_.numPhases() << ") and saturation-dependent function data (" << satprops_.numPhases() << ").");
|
||||
|
@ -135,7 +135,7 @@ namespace Opm
|
||||
private:
|
||||
RockFromDeck rock_;
|
||||
PvtPropertiesIncompFromDeck pvt_;
|
||||
SaturationPropsFromDeck<> satprops_;
|
||||
SaturationPropsFromDeck<SatFuncStone2Uniform> satprops_;
|
||||
};
|
||||
|
||||
|
||||
|
@ -21,8 +21,11 @@
|
||||
#define OPM_SATURATIONPROPSFROMDECK_HEADER_INCLUDED
|
||||
|
||||
#include <opm/core/fluid/SaturationPropsInterface.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
#include <opm/core/eclipse/EclipseGridParser.hpp>
|
||||
#include <opm/core/fluid/blackoil/BlackoilPhases.hpp>
|
||||
#include <opm/core/fluid/SatFuncStone2.hpp>
|
||||
#include <opm/core/fluid/SatFuncSimple.hpp>
|
||||
#include <vector>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
@ -31,21 +34,14 @@ namespace Opm
|
||||
{
|
||||
|
||||
|
||||
/// Class storing saturation functions in a uniform table,
|
||||
/// densely sampled from a monotone spline,
|
||||
/// using linear interpolation.
|
||||
class SatFuncSetUniform;
|
||||
|
||||
/// Class storing saturation functions in a nonuniform table
|
||||
/// using linear interpolation.
|
||||
class SatFuncSetNonuniform;
|
||||
|
||||
|
||||
/// Interface to saturation functions from deck.
|
||||
/// Possible values for template argument:
|
||||
/// SatFuncSetNonuniform,
|
||||
/// SatFuncSetUniform (default).
|
||||
template <class SatFuncSet = SatFuncSetUniform>
|
||||
/// Possible values for template argument (for now):
|
||||
/// SatFuncSetStone2Nonuniform,
|
||||
/// SatFuncSetStone2Uniform.
|
||||
/// SatFuncSetSimpleNonuniform,
|
||||
/// SatFuncSetSimpleUniform.
|
||||
template <class SatFuncSet>
|
||||
class SaturationPropsFromDeck : public SaturationPropsInterface
|
||||
{
|
||||
public:
|
||||
@ -53,12 +49,15 @@ namespace Opm
|
||||
SaturationPropsFromDeck();
|
||||
|
||||
/// Initialize from deck and grid.
|
||||
/// \param deck Deck input parser
|
||||
/// \param grid Grid to which property object applies, needed for the
|
||||
/// \param[in] deck Deck input parser
|
||||
/// \param[in] grid Grid to which property object applies, needed for the
|
||||
/// mapping from cell indices (typically from a processed grid)
|
||||
/// to logical cartesian indices consistent with the deck.
|
||||
/// \param[in] samples Number of uniform sample points for saturation tables.
|
||||
/// NOTE: samples will only be used with the SatFuncSetUniform template argument.
|
||||
void init(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid);
|
||||
const UnstructuredGrid& grid,
|
||||
const int samples);
|
||||
|
||||
/// \return P, the number of phases.
|
||||
int numPhases() const;
|
||||
|
@ -29,57 +29,6 @@
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
/// Class storing saturation functions in a uniform table,
|
||||
/// densely sampled from a monotone spline,
|
||||
/// using linear interpolation.
|
||||
class SatFuncSetUniform : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
UniformTableLinear<double> krw_;
|
||||
UniformTableLinear<double> krow_;
|
||||
UniformTableLinear<double> pcow_;
|
||||
UniformTableLinear<double> krg_;
|
||||
UniformTableLinear<double> krog_;
|
||||
UniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/// Class storing saturation functions in a nonuniform table
|
||||
/// using linear interpolation.
|
||||
class SatFuncSetNonuniform : public BlackoilPhases
|
||||
{
|
||||
public:
|
||||
void init(const EclipseGridParser& deck, const int table_num, PhaseUsage phase_usg);
|
||||
void evalKr(const double* s, double* kr) const;
|
||||
void evalKrDeriv(const double* s, double* kr, double* dkrds) const;
|
||||
void evalPc(const double* s, double* pc) const;
|
||||
void evalPcDeriv(const double* s, double* pc, double* dpcds) const;
|
||||
double smin_[PhaseUsage::MaxNumPhases];
|
||||
double smax_[PhaseUsage::MaxNumPhases];
|
||||
private:
|
||||
PhaseUsage phase_usage; // A copy of the outer class' phase_usage_.
|
||||
NonuniformTableLinear<double> krw_;
|
||||
NonuniformTableLinear<double> krow_;
|
||||
NonuniformTableLinear<double> pcow_;
|
||||
NonuniformTableLinear<double> krg_;
|
||||
NonuniformTableLinear<double> krog_;
|
||||
NonuniformTableLinear<double> pcog_;
|
||||
double krocw_; // = krow_(s_wc)
|
||||
};
|
||||
|
||||
|
||||
|
||||
// ----------- Methods of SaturationPropsFromDeck ---------
|
||||
|
||||
@ -93,7 +42,8 @@ namespace Opm
|
||||
/// Initialize from deck.
|
||||
template <class SatFuncSet>
|
||||
void SaturationPropsFromDeck<SatFuncSet>::init(const EclipseGridParser& deck,
|
||||
const UnstructuredGrid& grid)
|
||||
const UnstructuredGrid& grid,
|
||||
const int samples)
|
||||
{
|
||||
phase_usage_ = phaseUsageFromDeck(deck);
|
||||
|
||||
@ -144,7 +94,7 @@ namespace Opm
|
||||
// Initialize tables.
|
||||
satfuncset_.resize(num_tables);
|
||||
for (int table = 0; table < num_tables; ++table) {
|
||||
satfuncset_[table].init(deck, table, phase_usage_);
|
||||
satfuncset_[table].init(deck, table, phase_usage_, samples);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -47,7 +47,13 @@ namespace Opm
|
||||
BlackoilPvtProperties();
|
||||
|
||||
/// Initialize from deck.
|
||||
void init(const EclipseGridParser& deck, const bool use_spline);
|
||||
/// \param deck An input deck.
|
||||
/// \param samples If greater than zero, indicates the number of
|
||||
/// uniform samples to be taken from monotone spline
|
||||
/// curves interpolating the fluid data.
|
||||
/// Otherwise, interpolate linearly in the original
|
||||
/// data without fitting a spline.
|
||||
void init(const EclipseGridParser& deck, const int samples);
|
||||
|
||||
/// Number of active phases.
|
||||
int numPhases() const;
|
||||
|
@ -512,11 +512,11 @@ namespace Opm
|
||||
State& state)
|
||||
{
|
||||
const int num_phases = props.numPhases();
|
||||
if (num_phases != 2) {
|
||||
THROW("initStateFromDeck(): currently handling only two-phase scenarios.");
|
||||
}
|
||||
state.init(grid, num_phases);
|
||||
if (deck.hasField("EQUIL")) {
|
||||
if (num_phases != 2) {
|
||||
THROW("initStateFromDeck(): EQUIL-based init currently handling only two-phase scenarios.");
|
||||
}
|
||||
// Set saturations depending on oil-water contact.
|
||||
const EQUIL& equil= deck.getEQUIL();
|
||||
if (equil.equil.size() != 1) {
|
||||
@ -535,11 +535,27 @@ namespace Opm
|
||||
const std::vector<double>& sw_deck = deck.getFloatingPointValue("SWAT");
|
||||
const std::vector<double>& p_deck = deck.getFloatingPointValue("PRESSURE");
|
||||
const int num_cells = grid.number_of_cells;
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
|
||||
s[2*c] = sw_deck[c_deck];
|
||||
s[2*c + 1] = 1.0 - s[2*c];
|
||||
p[c] = p_deck[c_deck];
|
||||
if (num_phases == 2) {
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
|
||||
s[2*c] = sw_deck[c_deck];
|
||||
s[2*c + 1] = 1.0 - s[2*c];
|
||||
p[c] = p_deck[c_deck];
|
||||
}
|
||||
} else if (num_phases == 3) {
|
||||
if (!deck.hasField("SGAS")) {
|
||||
THROW("initStateFromDeck(): missing SGAS keyword in 3-phase init (only SWAT and PRESSURE found).");
|
||||
}
|
||||
const std::vector<double>& sg_deck = deck.getFloatingPointValue("SGAS");
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
int c_deck = (grid.global_cell == NULL) ? c : grid.global_cell[c];
|
||||
s[2*c] = sw_deck[c_deck];
|
||||
s[2*c + 1] = 1.0 - (sw_deck[c_deck] + sg_deck[c_deck]);
|
||||
s[2*c + 2] = sg_deck[c_deck];
|
||||
p[c] = p_deck[c_deck];
|
||||
}
|
||||
} else {
|
||||
THROW("initStateFromDeck(): init with SWAT etc. only available with 2 or 3 phases.");
|
||||
}
|
||||
} else {
|
||||
THROW("initStateFromDeck(): we must either have EQUIL, or both SWAT and PRESSURE.");
|
||||
|
@ -40,14 +40,14 @@ namespace Opm
|
||||
/// @param[out] porevol the pore volume by cell.
|
||||
void computePorevolume(const UnstructuredGrid& grid,
|
||||
const double* porosity,
|
||||
std::vector<double>& porevol)
|
||||
std::vector<double>& porevol)
|
||||
{
|
||||
int num_cells = grid.number_of_cells;
|
||||
porevol.resize(num_cells);
|
||||
std::transform(porosity, porosity + num_cells,
|
||||
grid.cell_volumes,
|
||||
porevol.begin(),
|
||||
std::multiplies<double>());
|
||||
int num_cells = grid.number_of_cells;
|
||||
porevol.resize(num_cells);
|
||||
std::transform(porosity, porosity + num_cells,
|
||||
grid.cell_volumes,
|
||||
porevol.begin(),
|
||||
std::multiplies<double>());
|
||||
}
|
||||
|
||||
|
||||
@ -98,20 +98,20 @@ namespace Opm
|
||||
/// For each phase p, we compute
|
||||
/// sat_vol_p = sum_i s_p_i pv_i
|
||||
void computeSaturatedVol(const std::vector<double>& pv,
|
||||
const std::vector<double>& s,
|
||||
double* sat_vol)
|
||||
const std::vector<double>& s,
|
||||
double* sat_vol)
|
||||
{
|
||||
const int num_cells = pv.size();
|
||||
const int np = s.size()/pv.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and pv vectors do not match.");
|
||||
}
|
||||
std::fill(sat_vol, sat_vol + np, 0.0);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
sat_vol[p] += pv[c]*s[np*c + p];
|
||||
}
|
||||
}
|
||||
const int num_cells = pv.size();
|
||||
const int np = s.size()/pv.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and pv vectors do not match.");
|
||||
}
|
||||
std::fill(sat_vol, sat_vol + np, 0.0);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
sat_vol[p] += pv[c]*s[np*c + p];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -123,28 +123,28 @@ namespace Opm
|
||||
/// For each phase p, we compute
|
||||
/// aver_sat_p = (sum_i s_p_i pv_i) / (sum_i pv_i).
|
||||
void computeAverageSat(const std::vector<double>& pv,
|
||||
const std::vector<double>& s,
|
||||
double* aver_sat)
|
||||
const std::vector<double>& s,
|
||||
double* aver_sat)
|
||||
{
|
||||
const int num_cells = pv.size();
|
||||
const int np = s.size()/pv.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and pv vectors do not match.");
|
||||
}
|
||||
double tot_pv = 0.0;
|
||||
// Note that we abuse the output array to accumulate the
|
||||
// saturated pore volumes.
|
||||
std::fill(aver_sat, aver_sat + np, 0.0);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
tot_pv += pv[c];
|
||||
for (int p = 0; p < np; ++p) {
|
||||
aver_sat[p] += pv[c]*s[np*c + p];
|
||||
}
|
||||
}
|
||||
// Must divide by pore volumes to get saturations.
|
||||
for (int p = 0; p < np; ++p) {
|
||||
aver_sat[p] /= tot_pv;
|
||||
}
|
||||
const int num_cells = pv.size();
|
||||
const int np = s.size()/pv.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and pv vectors do not match.");
|
||||
}
|
||||
double tot_pv = 0.0;
|
||||
// Note that we abuse the output array to accumulate the
|
||||
// saturated pore volumes.
|
||||
std::fill(aver_sat, aver_sat + np, 0.0);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
tot_pv += pv[c];
|
||||
for (int p = 0; p < np; ++p) {
|
||||
aver_sat[p] += pv[c]*s[np*c + p];
|
||||
}
|
||||
}
|
||||
// Must divide by pore volumes to get saturations.
|
||||
for (int p = 0; p < np; ++p) {
|
||||
aver_sat[p] /= tot_pv;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -161,38 +161,38 @@ namespace Opm
|
||||
/// where P = s.size()/src.size().
|
||||
/// @param[out] produced must also point to a valid array with P elements.
|
||||
void computeInjectedProduced(const IncompPropertiesInterface& props,
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& src,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced)
|
||||
const std::vector<double>& s,
|
||||
const std::vector<double>& src,
|
||||
const double dt,
|
||||
double* injected,
|
||||
double* produced)
|
||||
{
|
||||
const int num_cells = src.size();
|
||||
const int np = s.size()/src.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and src vectors do not match.");
|
||||
}
|
||||
std::fill(injected, injected + np, 0.0);
|
||||
std::fill(produced, produced + np, 0.0);
|
||||
const double* visc = props.viscosity();
|
||||
std::vector<double> mob(np);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
if (src[c] > 0.0) {
|
||||
injected[0] += src[c]*dt;
|
||||
} else if (src[c] < 0.0) {
|
||||
const double flux = -src[c]*dt;
|
||||
const double* sat = &s[np*c];
|
||||
props.relperm(1, sat, &c, &mob[0], 0);
|
||||
double totmob = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
mob[p] /= visc[p];
|
||||
totmob += mob[p];
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
const int num_cells = src.size();
|
||||
const int np = s.size()/src.size();
|
||||
if (int(s.size()) != num_cells*np) {
|
||||
THROW("Sizes of s and src vectors do not match.");
|
||||
}
|
||||
std::fill(injected, injected + np, 0.0);
|
||||
std::fill(produced, produced + np, 0.0);
|
||||
const double* visc = props.viscosity();
|
||||
std::vector<double> mob(np);
|
||||
for (int c = 0; c < num_cells; ++c) {
|
||||
if (src[c] > 0.0) {
|
||||
injected[0] += src[c]*dt;
|
||||
} else if (src[c] < 0.0) {
|
||||
const double flux = -src[c]*dt;
|
||||
const double* sat = &s[np*c];
|
||||
props.relperm(1, sat, &c, &mob[0], 0);
|
||||
double totmob = 0.0;
|
||||
for (int p = 0; p < np; ++p) {
|
||||
mob[p] /= visc[p];
|
||||
totmob += mob[p];
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
produced[p] += (mob[p]/totmob)*flux;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -203,9 +203,9 @@ namespace Opm
|
||||
/// @param[in] s saturation values (for all phases)
|
||||
/// @param[out] totmob total mobilities.
|
||||
void computeTotalMobility(const Opm::IncompPropertiesInterface& props,
|
||||
const std::vector<int>& cells,
|
||||
const std::vector<double>& s,
|
||||
std::vector<double>& totmob)
|
||||
const std::vector<int>& cells,
|
||||
const std::vector<double>& s,
|
||||
std::vector<double>& totmob)
|
||||
{
|
||||
std::vector<double> pmobc;
|
||||
|
||||
@ -231,10 +231,10 @@ namespace Opm
|
||||
/// @param[out] totmob total mobility
|
||||
/// @param[out] omega fractional-flow weighted fluid densities.
|
||||
void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props,
|
||||
const std::vector<int>& cells,
|
||||
const std::vector<double>& s,
|
||||
std::vector<double>& totmob,
|
||||
std::vector<double>& omega)
|
||||
const std::vector<int>& cells,
|
||||
const std::vector<double>& s,
|
||||
std::vector<double>& totmob,
|
||||
std::vector<double>& omega)
|
||||
{
|
||||
std::vector<double> pmobc;
|
||||
|
||||
@ -331,33 +331,33 @@ namespace Opm
|
||||
/// (+) positive inflow of first phase (water)
|
||||
/// (-) negative total outflow of both phases
|
||||
void computeTransportSource(const UnstructuredGrid& grid,
|
||||
const std::vector<double>& src,
|
||||
const std::vector<double>& faceflux,
|
||||
const double inflow_frac,
|
||||
const std::vector<double>& src,
|
||||
const std::vector<double>& faceflux,
|
||||
const double inflow_frac,
|
||||
const Wells* wells,
|
||||
const std::vector<double>& well_perfrates,
|
||||
std::vector<double>& transport_src)
|
||||
std::vector<double>& transport_src)
|
||||
{
|
||||
int nc = grid.number_of_cells;
|
||||
transport_src.resize(nc);
|
||||
int nc = grid.number_of_cells;
|
||||
transport_src.resize(nc);
|
||||
// Source term and boundary contributions.
|
||||
for (int c = 0; c < nc; ++c) {
|
||||
transport_src[c] = 0.0;
|
||||
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
|
||||
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
|
||||
int f = grid.cell_faces[hf];
|
||||
const int* f2c = &grid.face_cells[2*f];
|
||||
double bdy_influx = 0.0;
|
||||
if (f2c[0] == c && f2c[1] == -1) {
|
||||
bdy_influx = -faceflux[f];
|
||||
} else if (f2c[0] == -1 && f2c[1] == c) {
|
||||
bdy_influx = faceflux[f];
|
||||
}
|
||||
if (bdy_influx != 0.0) {
|
||||
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int c = 0; c < nc; ++c) {
|
||||
transport_src[c] = 0.0;
|
||||
transport_src[c] += src[c] > 0.0 ? inflow_frac*src[c] : src[c];
|
||||
for (int hf = grid.cell_facepos[c]; hf < grid.cell_facepos[c + 1]; ++hf) {
|
||||
int f = grid.cell_faces[hf];
|
||||
const int* f2c = &grid.face_cells[2*f];
|
||||
double bdy_influx = 0.0;
|
||||
if (f2c[0] == c && f2c[1] == -1) {
|
||||
bdy_influx = -faceflux[f];
|
||||
} else if (f2c[0] == -1 && f2c[1] == c) {
|
||||
bdy_influx = faceflux[f];
|
||||
}
|
||||
if (bdy_influx != 0.0) {
|
||||
transport_src[c] += bdy_influx > 0.0 ? inflow_frac*bdy_influx : bdy_influx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Well contributions.
|
||||
if (wells) {
|
||||
@ -392,52 +392,52 @@ namespace Opm
|
||||
/// @param[in] face_flux signed per-face fluxes
|
||||
/// @param[out] cell_velocity the estimated velocities.
|
||||
void estimateCellVelocity(const UnstructuredGrid& grid,
|
||||
const std::vector<double>& face_flux,
|
||||
std::vector<double>& cell_velocity)
|
||||
const std::vector<double>& face_flux,
|
||||
std::vector<double>& cell_velocity)
|
||||
{
|
||||
const int dim = grid.dimensions;
|
||||
cell_velocity.clear();
|
||||
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
|
||||
for (int face = 0; face < grid.number_of_faces; ++face) {
|
||||
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
|
||||
const double* fc = &grid.face_centroids[face*dim];
|
||||
double flux = face_flux[face];
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
if (c[i] >= 0) {
|
||||
const double* cc = &grid.cell_centroids[c[i]*dim];
|
||||
for (int d = 0; d < dim; ++d) {
|
||||
double v_contrib = fc[d] - cc[d];
|
||||
v_contrib *= flux/grid.cell_volumes[c[i]];
|
||||
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
const int dim = grid.dimensions;
|
||||
cell_velocity.clear();
|
||||
cell_velocity.resize(grid.number_of_cells*dim, 0.0);
|
||||
for (int face = 0; face < grid.number_of_faces; ++face) {
|
||||
int c[2] = { grid.face_cells[2*face], grid.face_cells[2*face + 1] };
|
||||
const double* fc = &grid.face_centroids[face*dim];
|
||||
double flux = face_flux[face];
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
if (c[i] >= 0) {
|
||||
const double* cc = &grid.cell_centroids[c[i]*dim];
|
||||
for (int d = 0; d < dim; ++d) {
|
||||
double v_contrib = fc[d] - cc[d];
|
||||
v_contrib *= flux/grid.cell_volumes[c[i]];
|
||||
cell_velocity[c[i]*dim + d] += (i == 0) ? v_contrib : -v_contrib;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Extract a vector of water saturations from a vector of
|
||||
/// interleaved water and oil saturations.
|
||||
void toWaterSat(const std::vector<double>& sboth,
|
||||
std::vector<double>& sw)
|
||||
std::vector<double>& sw)
|
||||
{
|
||||
int num = sboth.size()/2;
|
||||
sw.resize(num);
|
||||
for (int i = 0; i < num; ++i) {
|
||||
sw[i] = sboth[2*i];
|
||||
}
|
||||
int num = sboth.size()/2;
|
||||
sw.resize(num);
|
||||
for (int i = 0; i < num; ++i) {
|
||||
sw[i] = sboth[2*i];
|
||||
}
|
||||
}
|
||||
|
||||
/// Make a a vector of interleaved water and oil saturations from
|
||||
/// a vector of water saturations.
|
||||
void toBothSat(const std::vector<double>& sw,
|
||||
std::vector<double>& sboth)
|
||||
std::vector<double>& sboth)
|
||||
{
|
||||
int num = sw.size();
|
||||
sboth.resize(2*num);
|
||||
for (int i = 0; i < num; ++i) {
|
||||
sboth[2*i] = sw[i];
|
||||
sboth[2*i + 1] = 1.0 - sw[i];
|
||||
}
|
||||
int num = sw.size();
|
||||
sboth.resize(2*num);
|
||||
for (int i = 0; i < num; ++i) {
|
||||
sboth[2*i] = sw[i];
|
||||
sboth[2*i + 1] = 1.0 - sw[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -450,30 +450,30 @@ namespace Opm
|
||||
if (np != 2) {
|
||||
THROW("wellsToSrc() requires a 2 phase case.");
|
||||
}
|
||||
src.resize(num_cells);
|
||||
for (int w = 0; w < wells.number_of_wells; ++w) {
|
||||
src.resize(num_cells);
|
||||
for (int w = 0; w < wells.number_of_wells; ++w) {
|
||||
const int cur = wells.ctrls[w]->current;
|
||||
if (wells.ctrls[w]->num != 1) {
|
||||
MESSAGE("In wellsToSrc(): well has more than one control, all but current control will be ignored.");
|
||||
}
|
||||
if (wells.ctrls[w]->type[cur] != RESERVOIR_RATE) {
|
||||
THROW("In wellsToSrc(): well is something other than RESERVOIR_RATE.");
|
||||
}
|
||||
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
|
||||
THROW("In wellsToSrc(): well has multiple perforations.");
|
||||
}
|
||||
if (wells.ctrls[w]->num != 1) {
|
||||
MESSAGE("In wellsToSrc(): well has more than one control, all but current control will be ignored.");
|
||||
}
|
||||
if (wells.ctrls[w]->type[cur] != RESERVOIR_RATE) {
|
||||
THROW("In wellsToSrc(): well is something other than RESERVOIR_RATE.");
|
||||
}
|
||||
if (wells.well_connpos[w+1] - wells.well_connpos[w] != 1) {
|
||||
THROW("In wellsToSrc(): well has multiple perforations.");
|
||||
}
|
||||
for (int p = 0; p < np; ++p) {
|
||||
if (wells.ctrls[w]->distr[np*cur + p] != 1.0) {
|
||||
THROW("In wellsToSrc(): well not controlled on total rate.");
|
||||
}
|
||||
}
|
||||
double flow = wells.ctrls[w]->target[cur];
|
||||
double flow = wells.ctrls[w]->target[cur];
|
||||
if (wells.type[w] == INJECTOR) {
|
||||
flow *= wells.comp_frac[np*w + 0]; // Obtaining water rate for inflow source.
|
||||
}
|
||||
const double cell = wells.well_cells[wells.well_connpos[w]];
|
||||
src[cell] = flow;
|
||||
}
|
||||
const double cell = wells.well_cells[wells.well_connpos[w]];
|
||||
src[cell] = flow;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -593,8 +593,10 @@ namespace Opm
|
||||
{
|
||||
int nw = well_bhp.size();
|
||||
ASSERT(nw == wells.number_of_wells);
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("WellReport for now assumes two phase flow.");
|
||||
int np = props.numPhases();
|
||||
const int max_np = 3;
|
||||
if (np > max_np) {
|
||||
THROW("WellReport for now assumes #phases <= " << max_np);
|
||||
}
|
||||
const double* visc = props.viscosity();
|
||||
std::vector<double> data_now;
|
||||
@ -605,7 +607,8 @@ namespace Opm
|
||||
double well_rate_total = 0.0;
|
||||
double well_rate_water = 0.0;
|
||||
for (int perf = wells.well_connpos[w]; perf < wells.well_connpos[w + 1]; ++perf) {
|
||||
const double perf_rate = well_perfrates[perf]*(unit::day/unit::second);
|
||||
const double perf_rate = unit::convert::to(well_perfrates[perf],
|
||||
unit::cubic(unit::meter)/unit::day);
|
||||
well_rate_total += perf_rate;
|
||||
if (perf_rate > 0.0) {
|
||||
// Injection.
|
||||
@ -613,11 +616,14 @@ namespace Opm
|
||||
} else {
|
||||
// Production.
|
||||
const int cell = wells.well_cells[perf];
|
||||
double mob[2];
|
||||
double mob[max_np];
|
||||
props.relperm(1, &saturation[2*cell], &cell, mob, 0);
|
||||
mob[0] /= visc[0];
|
||||
mob[1] /= visc[1];
|
||||
const double fracflow = mob[0]/(mob[0] + mob[1]);
|
||||
double tmob = 0;
|
||||
for(int i = 0; i < np; ++i) {
|
||||
mob[i] /= visc[i];
|
||||
tmob += mob[i];
|
||||
}
|
||||
const double fracflow = mob[0]/tmob;
|
||||
well_rate_water += perf_rate*fracflow;
|
||||
}
|
||||
}
|
||||
@ -646,8 +652,10 @@ namespace Opm
|
||||
// TODO: refactor, since this is almost identical to the other push().
|
||||
int nw = well_bhp.size();
|
||||
ASSERT(nw == wells.number_of_wells);
|
||||
if (props.numPhases() != 2) {
|
||||
THROW("WellReport for now assumes two phase flow.");
|
||||
int np = props.numPhases();
|
||||
const int max_np = 3;
|
||||
if (np > max_np) {
|
||||
THROW("WellReport for now assumes #phases <= " << max_np);
|
||||
}
|
||||
std::vector<double> data_now;
|
||||
data_now.reserve(1 + 3*nw);
|
||||
@ -665,13 +673,16 @@ namespace Opm
|
||||
} else {
|
||||
// Production.
|
||||
const int cell = wells.well_cells[perf];
|
||||
double mob[2];
|
||||
double mob[max_np];
|
||||
props.relperm(1, &s[2*cell], &cell, mob, 0);
|
||||
double visc[2];
|
||||
double visc[max_np];
|
||||
props.viscosity(1, &p[cell], &z[2*cell], &cell, visc, 0);
|
||||
mob[0] /= visc[0];
|
||||
mob[1] /= visc[1];
|
||||
const double fracflow = mob[0]/(mob[0] + mob[1]);
|
||||
double tmob = 0;
|
||||
for(int i = 0; i < np; ++i) {
|
||||
mob[i] /= visc[i];
|
||||
tmob += mob[i];
|
||||
}
|
||||
const double fracflow = mob[0]/(tmob);
|
||||
well_rate_water += perf_rate*fracflow;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user