Added function to compute THP from BHP using VFP tables

This commit is contained in:
babrodtk 2015-07-08 17:37:28 +02:00
parent d27403b427
commit 0467af953c
3 changed files with 238 additions and 2 deletions

View File

@ -133,7 +133,6 @@ namespace detail {
return act2can;
}
} // namespace detail
@ -1197,7 +1196,9 @@ namespace detail {
// inequality constraint, and therefore skipped.
continue;
}
if (detail::constraintBroken(xw.bhp(), xw.thp(), xw.wellRates(), w, np, wells().type[w], wc, ctrl_index)) {
if (detail::constraintBroken(
xw.bhp(), xw.thp(), xw.wellRates(),
w, np, wells().type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
@ -1756,6 +1757,43 @@ namespace detail {
const V dbhp_limited = sign(dbhp) * dbhp.abs().min(bhp_old.abs()*dpmaxrel);
const V bhp = bhp_old - dbhp_limited;
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
// Thp update
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
//Loop over all wells
for (int w=0; w<nw; ++w) {
const WellControls* wc = wells().ctrls[w];
const int nwc = well_controls_get_num(wc);
//Loop over all controls until we find a THP control
//that specifies what we need...
//Will only update THP for wells with THP control
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(wc, ctrl_index) == THP) {
double aqua = 0.0;
double liquid = 0.0;
double vapour = 0.0;
if (active_[ Water ]) {
aqua = wr[w*np + pu.phase_pos[ Water ] ];
}
if (active_[ Oil ]) {
liquid = wr[w*np + pu.phase_pos[ Oil ] ];
}
if (active_[ Gas ]) {
vapour = wr[w*np + pu.phase_pos[ Gas ] ];
}
auto wc = wells().ctrls[w];
double alq = well_controls_iget_alq(wc, ctrl_index);
int table_id = well_controls_iget_vfp(wc, ctrl_index);
well_state.thp()[w] = vfp_properties_->prod_thp(table_id, aqua, liquid, vapour, bhp[w], alq);
//Assume only one THP control specified for each well
break;
}
}
}
}
}

View File

@ -137,6 +137,147 @@ double VFPProperties::prod_bhp(int table_id,
}
double VFPProperties::prod_thp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& bhp,
const double& alq) const {
const VFPProdTable* table = getProdTable(table_id);
const VFPProdTable::array_type& data = table->getTable();
double thp = -1e100;
//Find interpolation variables
double flo = getFlo(aqua, liquid, vapour, table->getFloType());
double wfr = getWFR(aqua, liquid, vapour, table->getWFRType());
double gfr = getGFR(aqua, liquid, vapour, table->getGFRType());
/**
* Get THP axis, assume that it is sorted
*/
const std::vector<double> thp_array = table->getTHPAxis();
int nthp = thp_array.size();
assert(std::is_sorted(thp_array.begin(), thp_array.end()));
/**
* Find the function bhp_array(thp) by creating a 1D view of the data
* by interpolating for every value of thp. This might be somewhat
* expensive, but let us assome that nthp is small
*/
auto flo_i = find_interp_data(flo, table->getFloAxis());
auto wfr_i = find_interp_data(wfr, table->getWFRAxis());
auto gfr_i = find_interp_data(gfr, table->getGFRAxis());
auto alq_i = find_interp_data(alq, table->getALQAxis());
std::vector<double> bhp_array(nthp);
for (int i=0; i<nthp; ++i) {
auto thp_i = find_interp_data(thp_array[i], thp_array);
bhp_array[i] = interpolate(data, flo_i, thp_i, wfr_i, gfr_i, alq_i);
}
/**
* Our *interpolated* bhp_array will be montoic increasing for increasing
* THP if our input BHP values are monotonic increasing for increasing
* THP values. However, if we have to *extrapolate* along any of the other
* axes, this guarantee holds no more, and bhp_array may be "random"
*/
if (std::is_sorted(bhp_array.begin(), bhp_array.end())) {
//Target bhp less than all values in array, extrapolate
if (bhp <= bhp_array[0]) {
//TODO: LOG extrapolation
const double& x0 = thp_array[0];
const double& x1 = thp_array[1];
const double& y0 = bhp_array[0];
const double& y1 = bhp_array[1];
thp = find_x(x0, x1, y0, y1, bhp);
}
//Target bhp greater than all values in array, extrapolate
else if (bhp > bhp_array[nthp-1]) {
//TODO: LOG extrapolation
const double& x0 = thp_array[nthp-2];
const double& x1 = thp_array[nthp-1];
const double& y0 = bhp_array[nthp-2];
const double& y1 = bhp_array[nthp-1];
thp = find_x(x0, x1, y0, y1, bhp);
}
//Target bhp within table ranges, interpolate
else {
//Loop over the values and find min(bhp_array(thp)) == bhp
//so that we maximize the rate.
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
//Assuming a small number of values in bhp_array, this should be quite
//efficient. Other strategies might be bisection, etc.
int i=0;
bool found = false;
for (; i<nthp-1; ++i) {
const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1];
if (y0 < bhp && bhp <= y1) {
found = true;
break;
}
}
//Canary in a coal mine: shouldn't really be required
assert(found == true);
const double& x0 = thp_array[i ];
const double& x1 = thp_array[i+1];
const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1];
thp = find_x(x0, x1, y0, y1, bhp);
}
}
//bhp_array not sorted, raw search.
else {
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
//Since the BHP values might not be sorted, first search within
//our interpolation values, and then try to extrapolate.
int i=0;
bool found = false;
for (; i<nthp-1; ++i) {
const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1];
if (y0 < bhp && bhp <= y1) {
found = true;
break;
}
}
if (found) {
const double& x0 = thp_array[i ];
const double& x1 = thp_array[i+1];
const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1];
thp = find_x(x0, x1, y0, y1, bhp);
}
else if (bhp <= bhp_array[0]) {
//TODO: LOG extrapolation
const double& x0 = thp_array[0];
const double& x1 = thp_array[1];
const double& y0 = bhp_array[0];
const double& y1 = bhp_array[1];
thp = find_x(x0, x1, y0, y1, bhp);
}
//Target bhp greater than all values in array, extrapolate
else if (bhp > bhp_array[nthp-1]) {
//TODO: LOG extrapolation
const double& x0 = thp_array[nthp-2];
const double& x1 = thp_array[nthp-1];
const double& y0 = bhp_array[nthp-2];
const double& y1 = bhp_array[nthp-1];
thp = find_x(x0, x1, y0, y1, bhp);
}
else {
OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array");
}
}
return thp;
}
const VFPProdTable* VFPProperties::getProdTable(int table_id) const {
auto entry = m_prod_tables.find(table_id);
@ -267,4 +408,31 @@ double VFPProperties::interpolate(const VFPProdTable::array_type& array,
#endif
double VFPProperties::find_x(const double& x0,
const double& x1,
const double& y0,
const double& y1,
const double& y) {
const double dx = x1 - x0;
const double dy = y1 - y0;
/**
* y = y0 + (dy / dx) * (x - x0)
* => x = x0 + (y - y0) * (dx / dy)
*
* If dy is zero, use x1 as the value.
*/
double x = 0.0;
if (dy != 0.0) {
x = x0 + (y-y0) * (dx/dy);
}
else {
x = x1;
}
return x;
}
} //Namespace

View File

@ -132,6 +132,25 @@ public:
const double& thp,
const double& alq) const;
/**
* Linear interpolation of thp as a function of the input parameters
* @param table_id Table number to use
* @param aqua Water phase
* @param liquid Oil phase
* @param vapour Gas phase
* @param bhp Bottom hole pressure
* @param alq Artificial lift or other parameter
*
* @return The tubing hole pressure, interpolated/extrapolated linearly using
* the above parameters from the values in the input table.
*/
double prod_thp(int table_id,
const double& aqua,
const double& liquid,
const double& vapour,
const double& bhp,
const double& alq) const;
//FIXME: ARB: Implement inj_bhp to match the prod_bhp's, but for injection wells.
/**
@ -233,6 +252,17 @@ private:
const InterpData& gfr_i,
const InterpData& alq_i);
/**
* Helper function that finds x for a given value of y for a line
* *NOTE ORDER OF ARGUMENTS*
*/
static double find_x(const double& x0,
const double& x1,
const double& y0,
const double& y1,
const double& y);
/**
* Initialization routines
*/