model description added to handbook

This commit is contained in:
Bernd Flemisch 2009-06-03 08:37:34 +00:00 committed by Andreas Lauser
parent 2968790d66
commit 06e0654d5d
12 changed files with 1849 additions and 1 deletions

File diff suppressed because it is too large Load Diff

View File

@ -52,6 +52,20 @@ dumux-handbook.html: $(DOCSOURCE) dune.cfg tex4ht.env
$(T4HT) dumux-handbook.tex
$(TEX) dumux-handbook.tex
all:
cat ../doxygen/latex/classDune_1_1OnePBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/1pboxmodel.tex
cat ../doxygen/latex/classDune_1_1OnePTwoCBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/1p2cboxmodel.tex
cat ../doxygen/latex/classDune_1_1RichardsBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/richardsboxmodel.tex
cat ../doxygen/latex/classDune_1_1TwoPBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/2pboxmodel.tex
cat ../doxygen/latex/classDune_1_1TwoPNIBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/2pniboxmodel.tex
cat ../doxygen/latex/classDune_1_1TwoPTwoCBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/2p2cboxmodel.tex
cat ../doxygen/latex/classDune_1_1TwoPTwoCNIBoxModel.tex | ../../util/scripts/extractDetailedDescription.py >ModelDescriptions/2p2cniboxmodel.tex
latex dumux-handbook.tex
bibtex dumux-handbook
latex dumux-handbook.tex
latex dumux-handbook.tex
dvipdf dumux-handbook
#dist-hook:
# sed $(srcdir)/Makefile.dist.am -e 's/Makefile\.dist/Makefile/g' > $(distdir)/Makefile.am
# sed $(srcdir)/Makefile.dist.in -e 's/Makefile\.dist/Makefile/g' > $(distdir)/Makefile.in
@ -61,3 +75,4 @@ EXTRA_TEXINPUTS:=$(top_srcdir)
include $(top_srcdir)/am/global-rules
include $(top_srcdir)/am/webstuff
include $(top_srcdir)/am/latex

View File

@ -0,0 +1 @@
Here comes the detailed documentation.

View File

@ -0,0 +1 @@
Here comes the detailed documentation.

View File

@ -0,0 +1,3 @@
This implements an isothermal two phase two component model.
Depending on the value of the \char`\"{}Formulation\char`\"{} property, the primary variables are either \$p\_\-w\$ and \$S\_\-n;X\$ or \$p\_\-n\$ or \$S\_\-w;X\$. By default they are \$p\_\-w\$ and \$S\_\-n\$

View File

@ -0,0 +1 @@
This implements a non-isothermal two-phase two-component model with Pw and Sn/X as primary unknowns. You can use Pn and Sw/X as primary variables if you set the Formulation property to pNsW.

View File

@ -0,0 +1 @@
\doxyref{TwoPBoxModel}{p.}{classDune_1_1TwoPBoxModel} describes the box discretization of an isothermal twophase flow model. The underlying equations are obtained after inserting Darcy's law into the mass balance equation for each phase, yielding \begin{align*} \phi \frac{\partial (\varrho_{\text{mass,w}} S_\text{w})}{\partial t} -\Div \left( \lambda_\text{w} \varrho_{\text{mass,w}} K \left(\grad p_\text{w} - \varrho_{\text{mass,w}}\boldsymbol{g} \right)\right) - q_\text{w} &= 0, \\ \phi \frac{\partial (\varrho_{\text{mass,n}} S_\text{n})}{\partial t} - \Div \left( \lambda_\text{n} \varrho_{\text{mass,n}} K\left( \grad p_\text{n} - \varrho_{\text{mass,n}}\boldsymbol{g} \right)\right) - q_\text{n} &= 0. \end{align*} You can pick the formulation by setting the \char`\"{}Formulation\char`\"{} property. The default is $p_\text{w}$-$S_\text{n}$.

View File

@ -0,0 +1 @@
This implements a non-isothermal two-phase model with Pw and Sn as primary unknowns. You can also use Pn and Sw as primary variables if you set the Formulation property to pNsW.

View File

@ -0,0 +1 @@
Here comes the detailed documentation.

View File

@ -481,3 +481,426 @@
number = {3},
}
@InProceedings{A3:aavatsmark:1994,
author = {Aavatsmark, I. and Barkve, T. and B{\o}e, {\O}. and
Mannseth, T.},
title = {Discretization on non-orthogonal, curvilinear grids
for multiphase flow},
booktitle = {Proc.\ of the 4th European Conf.\ on the Mathematics
of Oil Recovery},
year = {1994},
address = {Norway}
}
@Article{A3:aavatsmark:1996,
author = {Aavatsmark, I. and Barkve, T. and B{\o}e, {\O}. and
Mannseth, T.},
title = {Discretization on Non-Orthogonal, Quadrilateral
Grids for Inhomogeneous Anisotropic Media},
journal = {Journal of Computational Physics},
year = {1996},
volume = {127},
pages = {2--14}
}
@Article{A3:aavatsmark:2002,
author = {Aavatsmark, Ivar},
title = {An introduction to multipoint flux approximations
for quadrilateral grids},
journal = {Computational Geosciences},
year = {2002},
volume = {6},
pages = {405--432}
}
@article{A3:Braun:2002,
author = {Braun, C. and Helmig, R. and Manthey, S.},
title = {Determination of constitutive relationships for
two-phase flow processes in heterogeneous porous
media with emphasis on the relative
permeability-saturation-relationship},
journal = {Journal of Contaminant Hydrology},
year = {2005}
}
@InProceedings{A3:edwards:1994,
author = {Edwards, M. G. and Rogers, C. F.},
title = {A flux continuous scheme for the full tensor
pressure equation},
booktitle = {Proc.\ of the 4th European Conf.\ on the Mathematics
of Oil Recovery},
year = {1994},
address = {Norway}
}
@Book{A3:whitaker:1999,
author = {Whitaker, Stephen},
title = {The Method of Volume Averaging},
publisher = {Kluwer Academic Publishers},
year = {1999},
volume = {13},
series = {Theory and Applications of Transport in Porous Media},
address = {Dordrecht}
}
@Book{A3:helmig:1997,
author = {Helmig, R.},
title = {Multiphase Flow and Transport Processes in the
Subsurface --- A Contribution to the Modeling of
Hydrosystems},
publisher = {Springer Verlag},
year = {1997}
}
@PhdThesis{A3:emmert:1997,
author = {Emmert, Martin},
title = {Numerische Simulation von isothermen/nichtisothermen
Mehrphasenprozessen unter Ber\"ucksichtigung der
Ver\"anderung der Fluideigenschaften},
school = {Institut f\"ur Wasserbau, Universit\"at Stuttgart},
year = {1997}
}
@Book{A3:class:2001,
author = {Class, Holger},
title = {Theorie und numerische Modellierung nichtisothermer
Mehrphasenprozesse in NAPL-kontaminierten por\"osen
Medien},
publisher = {Institut f\"ur Wasserbau, Universit\"at Stuttgart},
year = {2001},
volume = {105},
series = {Mitteilungsheft}
}
@InBook{A3:bastian:2000,
author = {Bastian, P. and Chen, Z. and Ewing, R. E. and
Helmig, R. and Jakobs H. and Reichenberger V.},
title = {Numerical Simulation of Multiphase Flow in Fractured
Porous Media.},
publisher = {Springer Verlag},
year = {2000},
series = {Lecture Notes in Physics, Chen, Ewing and Shi (eds.)},
pages = {52--71}
}
@Book{A3:aziz:1979,
author = {Aziz, K. and Settari, A.},
title = {Petroleum Reservoir Simulation},
publisher = {Applied Science Publishers, London},
year = {1979}
}
@Book{A3:looney:2000,
author = {Looney, B. B. and Falta, R. W.},
title = {Vadose Zone},
publisher = {Batelle Press, Columbus OH},
year = {2000}
}
@MastersThesis{A3:grass:2005,
author = {Grass, Christoph},
title = {Untersuchung von Randbedingungen bei der numerischen
Simulation von Zweiphasenstr\"omungen in por\"osen
Medien},
school = {Institut f\"ur Wasserbau, Universit\"at Stuttgart},
year = {2005},
month = {January}
}
@InBook{A3:bastian:1997,
author = {Bastian, P. and Birken, K. and Lang, S. and
Johannsen, K. and Neuss, N. and Rentz-Reichert,
H. and Wieners, C.},
title = {UG: A flexible software toolbox for solving partial
differential equations.},
publisher = {Springer Verlag},
year = {1997},
volume = {1},
series = {Computing and Visualization in Science},
pages = {27--40}
}
@Book{A3:lancaster:1969,
author = {Lancaster, Peter},
title = {Theory of Matrices},
publisher = {Academic Press, Inc.\ (London) Ltd.},
year = {1969}
}
@PhdThesis{A3:oelmann:2006a,
author = {\"Olmann, Ulrich},
title = {Behandlung anisotroper Mobilit\"aten als Resultat
von Upscalingverfahren mittels
Mehrpunktflu{\ss}approximationen},
school = {Institut f\"ur Wasserbau, Universit\"at Stuttgart},
year = {to be published 2006}
}
@InBook{A3:sfb404:2003,
author = {Helmig, R. and Class, H. and Jakobs, H. and
Bierlinski, A. and \"Olmann, U.},
title = {Arbeits- und Ergebnisbericht 2003},
chapter = {A3},
publisher = {SFB 404},
year = {2003},
month = {May},
pages = {69--98}
}
@Article{A3:coats:1974,
author = {Coats, K.H. and Chieh Chu, W.D.G. and Marcum, B.E.},
title = {Three-dimensional simulation of steamflooding},
journal = {Society of Petroleum Engineers Journal},
year = {1974},
month = {December}
}
@Article{A3:falta:1992,
author = {Falta, R.W. and Pruess, K. and Javandel, I. and
Witherspoon, P.A.},
title = {Numerical Modeling of Steam Injection for the
Removal of Nonaqueous Phase Liquids From the
Subsurface. 1. Numerical Formulation},
journal = {Water Resoures Research},
year = {1992},
volume = {28,2},
pages = {433--449}
}
@Article{A3:class:2002a,
author = {Class, H. and Helmig, R. and Bastian, P.},
title = {Numerical Simulation of Nonisothermal Multiphase
Multicomponent Processes in Porous Media -- 1. An
Efficient Solution Technique},
journal = {Advances in Water Resources},
year = {2002},
volume = {25},
pages = {533--550}
}
@Article{A3:class:2002b,
author = {Class, H. and Helmig, R.},
title = {Numerical Simulation of Nonisothermal Multiphase
Multicomponent Processes in Porous Media --
2. Applications for the Injection of Steam and Air},
journal = {Advances in Water Resources},
year = {2002},
volume = {25},
pages = {551--564}
}
@TechReport{A3:forsyth:1993,
author = {Forsyth, P.A.},
title = {Three dimensional modeling of steam flush for DNAPL
site remediation},
institution = {Dep. of Computer Science},
year = {1993},
address = {University of Waterloo},
note = {CS-93-56}
}
@PhdThesis{A3:bielinski:2006,
author = {Bielinski, A.},
title = {Numerical Simulation of CO$_2$ Sequestration in
Geological Formations},
school = {Institut f\"ur Wasserbau, Universit\"at Stuttgart},
year = {2006}
}
@Article{A3:nordbotten:2005a,
author = {Nordbotten, J.M. and Celia, M.A. and Bachu, S.},
title = {Injection and Storage of {CO$_2$} in Deep Saline
Aquifers: Analytical Solution for {CO$_2$} Plume
Evolution During Injection},
journal = {Transport in Porous Media},
year = {2005},
volume = {58(3)},
pages = {339--360}
}
@Article{A3:nordbotten:2005b,
author = {Nordbotten, J.M. and Celia, M.A. and Bachu, S. and
Dahle, H.},
title = {Semi-Analytical Solution for {CO$_2$} Leakage
through an Abandoned Well},
journal = {Environmental Science and Technology},
year = {2005},
volume = {39(2)},
pages = {602--611}
}
@Article{A3:acosta:2006,
author = {Acosta, M. and Merten, C. and Eigenberger, G. and
Class, H. and Helmig, R. and Thoben, B. and
M\"uller-Steinhagen, H.},
title = {Modeling non-isothermal two-phase multicomponent
flow in the cathode of PEM fuel cells},
journal = {Journal of Power Sources},
year = {2006},
pages = {in print}
}
@InProceedings{A3:freiboth:2004,
author = {Sandra H\"olzemann and Holger Class and Rainer
Helmig},
title = {A New Concept for the Numerical Simulation and
Parameter Identification of Multiphase Flow and
Transport Processes in Cohesive Soils},
booktitle = {{Unsaturated Soils: Numerical and Theoretical
Approaches -- Proceedings of the International
Conference ``From Experimental Evidence towards
Numerical Modelling of Unsaturated Soils'' (18. -
19. September 2003, Bauhaus-Universit\"at Weimar)}},
year = {2004},
editor = {Schanz, T.},
publisher = {Springer-Verlag},
note = {ISBN: 3-540-21122-5}
}
@Misc{A3:IAPWS:2003,
author = {IAPWS (The International Association for the
Properties of Water and Steam)},
title = {Revised Release on the IAPS Formulation 1985 for the
Viscosity of Ordinary Water Substance},
howpublished = {http://www.iapws.org/},
year = {2003}
}
@Book{A3:reid:1987,
author = {Reid, R.C. and Prausnitz, J.M. and Poling, B.E.},
title = {The Properties of Gases and Liquids},
publisher = {McGraw-Hill Inc.},
year = {1987}
}
@Book{A3:leveque:1998,
author = {LeVeque, Randall J.},
title = {Numerical Methods for Conservation Laws},
publisher = {Birkh\"auser Verlag, Basel Boston, Berlin},
year = {1998}
}
@InProceedings{A3:gimse:1991,
author = {Gimse, Tore and Risebro, Nils Henrik},
title = {Riemann Problems with a Discontinuous Flux Function},
booktitle = {Proc.\ 3rd Internat.\ Conf.\ Hyperbolic Problems},
pages = {488-502},
year = {1991},
address = {Uppsala}
}
@Article{A3:gimse:1992,
author = {Gimse, Tore and Risebro, Nils Henrik},
title = {Solution of the Cauchy Problem for a Conservation
Law with a Discontinuous Flux Function},
journal = {SIAM J.\ Math.\ Anal.},
year = {1992},
volume = {23},
number = {3},
pages = {635-648}
}
@Misc{A3:oelmann:2006b,
author = {\"Olmann, U. and Aavatsmark, I. and Helmig, R.},
title = {{Buckley-Leverett heterogen --- Konstruktion der
L\"osung mit der Charakteristikenmethode}},
howpublished = {Preprint-Reihe des SFB404},
note = {2006/05},
month = {March},
year = {2006}
}
@book{A3:Stauffer:1984,
author = {Stauffer, F. and Aharnony, A.},
title = {Introduction to Percolation Theory},
publisher = {Taylor \& Francis},
year = {1994}
}
@article{A3:King:1996,
author = {King, P. R.},
title = {Upscaling Permeability: Error Analysis for
Renormalisation},
journal = {Transport in Porous Media},
volume = {23},
pages = {337--354},
year = {1996}
}
@article{A3:Williams:1989,
author = {Williams, J. K.},
title = {Simple Renormalisation Schemes for Calculating
Effective Properties of Heterogeneous Reservoirs},
journal = {1st European Conference on the Mathematics of Oil
Recovery, Cambridge, UK, July 1989},
year = {1989}
}
@article{A3:Wen:1996,
author = {Wen, X. H. and G\'{o}mez-Hern\'{a}ndez, J. J.},
title = {Upscaling hydraulic conductivities in heterogenous
media: An overview},
journal = {Journal of Hydrology},
volume = {183},
pages = {ix--xxxii},
year = {1996}
}
@InProceedings{A3:HelmigEtAl:2006,
author = {Helmig, R. and Miller, C. T. and Jakobs, H. and
Class, H. and Hilpert, M. and Kees, C. E. and
Niessner, J.},
title = {{Multiphase Flow and Transport Modeling in
Heterogeneous Porous Media}},
booktitle = {Progress in Industrial Mathematics at ECMI 2004},
pages = {449--488},
year = {2006},
editor = {Di Bucchianico, A. and Mattheij, R. M. M. and
Peletier, M. A.},
address = {Eindhoven University of Technology},
month = {6},
publisher = {Springer-Verlag},
type = {Plenary lecture},
note = {3-540-28072-3}
}
@Unpublished{A3:nordbotten:2005c,
author = {Nordbotten, J. M. and Aavatsmark, I. and Eigestad,
G. T.},
title = {Monotonicity of Control Volume Methods},
note = {submitted to Numerische Mathematik},
year = {2005}
}
@Article{A3:bastian:1999,
author = {Bastian, P. and Helmig, R.},
title = {Efficient Fully-Coupled Solution Techniques for Two
Phase Flow in Porous Media. Parallel Multigrid
Solution and Large Scale Computations},
journal = {Advances in Water Resources},
year = {1999}
}
@Article{A3:deneef:1997,
author = {De Neef, M. and Molenaar, J.},
title = {Analysis of DNAPL infiltration in a Medium with a
low-permeable lens},
journal = {Computational Geosciences},
year = {1997},
volume = {1},
pages = {191-214}
}
@InProceedings{A3:allan:1998,
author = {Allan, J. and Ewing, J. and Helmig, R. and Braun, J.},
title = {Scale effects in multiphase flow modeling},
booktitle = {1. International conference on remediation of
chlorinated and recalcitrant compounds},
year = {1998},
editor = {Wickramanayake, G.B. and Hinchee, R.E.},
address = {Monterey, California, USA},
month = {18th--21st of may},
publisher = {Battelle Press, Columbus, OH, USA}
}

View File

@ -20,6 +20,24 @@
\newcommand{\Dune}{{\sf\bfseries DUNE}}
\newcommand{\Dumux}{DuMu$^\text{x}$ }
\newcommand{\doxyref}[3]{\textnormal{#1}}
\newenvironment{CompactList}
{\begin{list}{}{
\setlength{\leftmargin}{0.5cm}
\setlength{\itemsep}{0pt}
\setlength{\parsep}{0pt}
\setlength{\topsep}{0pt}
\renewcommand{\makelabel}{\hfill}}}
{\end{list}}
\newenvironment{CompactItemize}
{
\begin{itemize}
\setlength{\itemsep}{-3pt}
\setlength{\parsep}{0pt}
\setlength{\topsep}{0pt}
\setlength{\partopsep}{0pt}
}
{\end{itemize}}
%The theorems
\theorembodyfont{\upshape}
@ -29,6 +47,10 @@
\newtheorem{lst}{Listing}
\newtheorem{warn}[exc]{Warning}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\Div}{div}
\pagestyle{scrheadings}
\title{\Dumux Handbook}
@ -61,6 +83,7 @@ Universit\"at Stuttgart, Paffenwaldring 61, D-70569 Stuttgart, Germany}\\
\input{intro}
\input{getting-started}
\input{tutorial}
\input{models}
\bibliographystyle{plain}
\bibliography{dumux-handbook}

150
doc/handbook/models.tex Normal file
View File

@ -0,0 +1,150 @@
\chapter[Models]{Physical and numerical models}
\section{Physical and mathematical description}
Characteristic of compositional multiphase models is that the phases
are not only matter of a single chemical substance. Instead, their
composition in general includes several species, and for the mass transfer,
the component behavior is quite different from the phase behavior. In the following, we
give some basic definitions and assumptions that are required for the
formulation of the model concept below. As an example, we take a
three-phase three-component system water-NAPL-gas
\cite{A3:class:2002a}. The modification for other multicomponent
systems is straightforward and can be found, e.\ g., in
\cite{A3:bielinski:2006,A3:acosta:2006}.
\subsection{Basic Definitions and Assumptions for the Compositional
Model Concept}
\textbf{Components:}
The term {\it component} stands for constituents of the phases which
can be associated with a unique chemical species, or, more generally, with
a group of species exploiting similar physical behavior. In this work, we
assume a water-gas-NAPL system composed of the phases water (subscript
$\text{w}$), gas ($\text{g}$), and NAPL ($\text{n}$). These phases are
composed of the components water (superscript $\text{w}$), air
($\text{a}$), and the organic contaminant ($\text{c}$) (see Fig.\
\ref{A3:fig:mundwtrans}).
%
\begin{figure}[hbt]
\centering
\includegraphics[width=0.7\linewidth]{EPS/masstransfer}
\caption{Mass and energy transfer between the phases}
\label{A3:fig:mundwtrans}
\end{figure}
\textbf{Equilibrium:}
For the nonisothermal multiphase processes in porous media under
consideration, we state that the assumption of local thermal
equilibrium is valid since flow velocities are small. We neglect
chemical reactions and biological decomposition and assume chemical
equilibrium. Mechanical equilibrium is not valid in a porous medium,
since discontinuities in pressure can occur across a fluid-fluid
interface due to capillary effects.
\textbf{Notation:} The index $\alpha \in \{\text{w}, \text{n}, \text{g}\}$ refers
to the phase, while the index $\kappa \in \{\text{w}, \text{a}, \text{c}\}$ refers
to the component. \\
\begin{tabular}{llll}
$p_\alpha$ & phase pressure & $\phi$ & porosity \\
$T$ & temperature & $K$ & absolute permeability tensor \\
$S_\alpha$ & phase saturation & $\tau$ & tortuosity \\
$x_\alpha^\kappa$ & mole fraction of component $\kappa$ in phase $\alpha$ & $\boldsymbol{g}$ & gravitational acceleration \\
$X_\alpha^\kappa$ & mass fraction of component $\kappa$ in phase $\alpha$ & $q^\kappa$ & volume source term \\
$\varrho_{\text{mol},\alpha}$ & molar density of phase $\alpha$ & $u_\alpha$ & specific internal energy \\
$\varrho_{\text{mass},\alpha}$ & mass density of phase $\alpha$ & $h_\alpha$ & specific enthalpy \\
$k_{\text{r}\alpha}$ & relative permeability & $c_\text{s}$ & specific heat enthalpy \\
$\mu_\alpha$ & phase viscosity & $\lambda_\text{pm}$ & heat conductivity \\
$D_\alpha^\kappa$ & diffusivity of component $\kappa$ in phase $\alpha$ & $q^h$ & heat source term
\end{tabular}
\subsection{Balance Equations}
For the balance equations for multicomponent systems, it is in many
cases convenient to use a molar formulation of the continuity
equation. Considering the mass conservation for each component allows
us to drop source/sink terms for describing the mass transfer between
phases. Then, the
molar mass balance can be written as:
%
\begin{eqnarray}
\label{A3:eqmass1}
&& \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha}
x_\alpha^\kappa S_\alpha )}{\partial t} \nonumber
- \sum\limits_\alpha \Div \left( \frac{k_{\text{r}
\alpha}}{\mu_\alpha} \varrho_{\text{mol}, \alpha}
x_\alpha^\kappa K (\grad p_\alpha -
\varrho_{\text{mass}, \alpha} \boldsymbol{g}) \right) \nonumber \\
%
\nonumber \\
%
&& - \sum\limits_\alpha \Div \left( \tau \phi S_\alpha D_\alpha^\kappa \varrho_{\text{mol},
\alpha} \grad x_\alpha^\kappa \right) \nonumber
- q^\kappa = 0, \qquad \kappa \in \{\text{w,a,c}\}.
\end{eqnarray}
In the case of non-isothermal systems, we further have to balance the
thermal energy. We assume fully reversible processes, such that entropy
is not needed as a model parameter. Furthermore, we neglect
dissipative effects and the heat transport due to molecular
diffusion. The heat balance can then be
formulated as:
%
\begin{eqnarray}
\label{A3:eqenergmak1}
&& \phi \frac{\partial \left( \sum_\alpha \varrho_{\text{mass},
\alpha} u_\alpha S_\alpha \right)}{\partial t} + \left( 1 -
\phi \right) \frac{\partial \varrho_{\text{s}} c_{\text{s}}
T}{\partial t} \nonumber
- \Div \left( \lambda_{\text{pm}} \grad T \right)
\nonumber \\
%
\nonumber \\
%
&& - \sum\limits_\alpha \Div \left( \frac{k_{\text{r}
\alpha}}{\mu_\alpha} \varrho_{\text{mass}, \alpha} h_\alpha
K \left( \grad p_\alpha - \varrho_{\text{mass}, \alpha}
\boldsymbol{g} \right) \right) \nonumber
- q^h \; = \; 0.
\end{eqnarray}
In order to close the system, supplementary constraints for capillary pressure, saturations and mole
fractions are needed, \cite{A3:helmig:1997}.
According to the Gibbsian phase rule, the number of degrees of freedom
in a non-isothermal multiphase multicomponent system is equal to the
number of components plus one. This means we need as many independent
unknowns in the system description. The
available primary variables are, e.\ g., saturations, mole/mass
fractions, temperature, pressures, etc.
\section{Available models}
\subsection{Fully coupled models}
\subsubsection{OnePBoxModel}
\input{ModelDescriptions/1pboxmodel}
\subsubsection{OnePTwoCBoxModel}
\input{ModelDescriptions/1p2cboxmodel}
\subsubsection{RichardsBoxModel}
\input{ModelDescriptions/richardsboxmodel}
\subsubsection{TwoPBoxModel}
\input{ModelDescriptions/2pboxmodel}
\subsubsection{TwoPNIBoxModel}
\input{ModelDescriptions/2pniboxmodel}
\subsubsection{TwoPTwoCBoxModel}
\input{ModelDescriptions/2p2cboxmodel}
\subsubsection{TwoPTwoCNIBoxModel}
\input{ModelDescriptions/2p2cniboxmodel}
\subsection{Decoupled models}