Updated to match change in IncompTpfa interface.

This commit is contained in:
Atgeirr Flø Rasmussen 2012-06-13 10:54:00 +02:00
parent 022b1ccb11
commit 07130c55f7

View File

@ -56,6 +56,7 @@
#include <opm/core/utility/ColumnExtract.hpp>
#include <opm/polymer/PolymerState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/polymer/SinglePointUpwindTwoPhasePolymer.hpp>
#include <opm/polymer/GravityColumnSolverPolymer.hpp>
#include <opm/polymer/TransportModelPolymer.hpp>
@ -482,13 +483,15 @@ main(int argc, char** argv)
// Check that rock compressibility is not used with solvers that do not handle it.
int nl_pressure_maxiter = 0;
double nl_pressure_tolerance = 0.0;
double nl_pressure_residual_tolerance = 0.0;
double nl_pressure_change_tolerance = 0.0;
if (rock_comp->isActive()) {
if (!use_reorder) {
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
}
nl_pressure_residual_tolerance = param.getDefault("nl_pressure_residual_tolerance", 0.0);
nl_pressure_change_tolerance = param.getDefault("nl_pressure_change_tolerance", 1.0); // In Pascal.
nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
nl_pressure_tolerance = param.getDefault("nl_pressure_tolerance", 1.0); // in Pascal
}
// Source-related variables init.
@ -537,7 +540,10 @@ main(int argc, char** argv)
Opm::LinearSolverFactory linsolver(param);
// Pressure solver.
const double *grav = use_gravity ? &gravity[0] : 0;
Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver, wells->c_wells());
Opm::IncompTpfa psolver(*grid->c_grid(), *props, rock_comp.get(), linsolver,
nl_pressure_residual_tolerance, nl_pressure_change_tolerance,
nl_pressure_maxiter,
grav, wells->c_wells(), src, bcs.c_bcs());
// Reordering solver.
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
@ -629,17 +635,15 @@ main(int argc, char** argv)
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> well_bhp;
std::vector<double> well_perfrates;
Opm::WellState well_state;
well_state.init(wells->c_wells(), state);
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
int num_wells = 0;
if (wells->c_wells()) {
num_wells = wells->c_wells()->number_of_wells;
well_bhp.resize(num_wells, 0.0);
well_perfrates.resize(wells->c_wells()->well_connpos[num_wells], 0.0);
well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(wells->c_wells()->number_of_wells), 0.0);
wellreport.push(*props, *wells->c_wells(), state.saturation(), 0.0, well_bhp, well_perfrates);
wellreport.push(*props, *wells->c_wells(), state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !simtimer.done(); ++simtimer) {
// Report timestep and (optionally) write state to disk.
@ -670,48 +674,27 @@ main(int argc, char** argv)
int well_control_iteration = 0;
do {
pressure_timer.start();
if (rock_comp->isActive()) {
rc.resize(num_cells);
std::vector<double> initial_pressure = state.pressure();
std::vector<double> initial_porevolume(num_cells);
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, initial_pressure, initial_porevolume);
std::vector<double> pressure_increment(num_cells + num_wells);
std::vector<double> prev_pressure(num_cells + num_wells);
for (int iter = 0; iter < nl_pressure_maxiter; ++iter) {
for (int cell = 0; cell < num_cells; ++cell) {
rc[cell] = rock_comp->rockComp(state.pressure()[cell]);
}
computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
std::copy(state.pressure().begin(), state.pressure().end(), prev_pressure.begin());
std::copy(well_bhp.begin(), well_bhp.end(), prev_pressure.begin() + num_cells);
// prev_pressure = state.pressure();
// compute pressure increment
psolver.solveIncrement(totmob, omega, src, wdp, bcs.c_bcs(), porevol, rc,
prev_pressure, initial_porevolume, simtimer.currentStepLength(),
pressure_increment);
double max_change = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += pressure_increment[cell];
max_change = std::max(max_change, std::fabs(pressure_increment[cell]));
}
for (int well = 0; well < num_wells; ++well) {
well_bhp[well] += pressure_increment[num_cells + well];
max_change = std::max(max_change, std::fabs(pressure_increment[num_cells + well]));
}
std::cout << "Pressure iter " << iter << " max change = " << max_change << std::endl;
if (max_change < nl_pressure_tolerance) {
break;
}
std::vector<double> initial_pressure = state.pressure();
psolver.solve(simtimer.currentStepLength(), state, well_state);
if (!rock_comp->isActive()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.;
double av_press = 0.;
double tot_vol = 0.;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid->c_grid()->cell_volumes[cell];
av_press += state.pressure()[cell]*grid->c_grid()->cell_volumes[cell];
tot_vol += grid->c_grid()->cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
psolver.computeFaceFlux(totmob, omega, src, wdp, bcs.c_bcs(), state.pressure(), state.faceflux(),
well_bhp, well_perfrates);
} else {
psolver.solve(totmob, omega, src, wdp, bcs.c_bcs(), state.pressure(), state.faceflux(),
well_bhp, well_perfrates);
}
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
@ -722,11 +705,11 @@ main(int argc, char** argv)
if (check_well_controls) {
Opm::computePhaseFlowRatesPerWell(*wells->c_wells(),
fractional_flows,
well_perfrates,
well_state.perfRates(),
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells->conditionsMet(well_bhp, well_resflows_phase, well_resflows_phase);
well_control_passed = wells->conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations) {
THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries.");
@ -741,7 +724,7 @@ main(int argc, char** argv)
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
wells->c_wells(), well_perfrates, reorder_src);
wells->c_wells(), well_state.perfRates(), reorder_src);
// Find inflow rate.
@ -848,7 +831,7 @@ main(int argc, char** argv)
if (wells->c_wells()) {
wellreport.push(*props, *wells->c_wells(), state.saturation(),
simtimer.currentTime() + simtimer.currentStepLength(),
well_bhp, well_perfrates);
well_state.bhp(), well_state.perfRates());
}
}
total_timer.stop();