diff --git a/opm/autodiff/VFPHelpers.hpp b/opm/autodiff/VFPHelpers.hpp
new file mode 100644
index 000000000..1721b8146
--- /dev/null
+++ b/opm/autodiff/VFPHelpers.hpp
@@ -0,0 +1,358 @@
+/*
+ Copyright 2015 SINTEF ICT, Applied Mathematics.
+
+ This file is part of the Open Porous Media project (OPM).
+
+ OPM is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ OPM is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with OPM. If not, see .
+*/
+
+
+#ifndef OPM_AUTODIFF_VFPHELPERS_HPP_
+#define OPM_AUTODIFF_VFPHELPERS_HPP_
+
+
+#include
+
+
+/**
+ * This file contains a set of helper functions used by VFPProd / VFPInj.
+ */
+namespace Opm {
+namespace detail {
+
+
+typedef VFPProdProperties::ADB ADB;
+
+
+
+
+
+
+
+
+
+
+/**
+ * Returns zero if input value is NaN
+ */
+inline double zeroIfNan(const double& value) {
+ return (std::isnan(value)) ? 0.0 : value;
+}
+
+
+
+
+
+/**
+ * Returns zero for every entry in the ADB which is NaN
+ */
+inline ADB zeroIfNan(const ADB& values) {
+ Selector not_nan_selector(values.value(), Selector::NotNaN);
+
+ const ADB::V z = ADB::V::Zero(values.size());
+ const ADB zero = ADB::constant(z, values.blockPattern());
+
+ ADB retval = not_nan_selector.select(values, zero);
+ return retval;
+}
+
+
+
+
+
+/**
+ * Computes the flo parameter according to the flo_type_
+ * @return Production rate of oil, gas or liquid.
+ */
+template
+static T getFlo(const T& aqua, const T& liquid, const T& vapour,
+ const VFPProdTable::FLO_TYPE& type) {
+ switch (type) {
+ case VFPProdTable::FLO_OIL:
+ //Oil = liquid phase
+ return liquid;
+ case VFPProdTable::FLO_LIQ:
+ //Liquid = aqua + liquid phases
+ return aqua + liquid;
+ case VFPProdTable::FLO_GAS:
+ //Gas = vapor phase
+ return vapour;
+ case VFPProdTable::FLO_INVALID: //Intentional fall-through
+ default:
+ OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
+ }
+}
+
+
+
+
+
+
+
+/**
+ * Computes the wfr parameter according to the wfr_type_
+ * @return Production rate of oil, gas or liquid.
+ */
+template
+static T getWFR(const T& aqua, const T& liquid, const T& vapour,
+ const VFPProdTable::WFR_TYPE& type) {
+ switch(type) {
+ case VFPProdTable::WFR_WOR: {
+ //Water-oil ratio = water / oil
+ T wor = aqua / liquid;
+ return zeroIfNan(wor);
+ }
+ case VFPProdTable::WFR_WCT:
+ //Water cut = water / (water + oil)
+ return zeroIfNan(aqua / (aqua + liquid));
+ case VFPProdTable::WFR_WGR:
+ //Water-gas ratio = water / gas
+ return zeroIfNan(aqua / vapour);
+ case VFPProdTable::WFR_INVALID: //Intentional fall-through
+ default:
+ OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
+ }
+}
+
+
+
+
+
+
+/**
+ * Computes the gfr parameter according to the gfr_type_
+ * @return Production rate of oil, gas or liquid.
+ */
+template
+static T getGFR(const T& aqua, const T& liquid, const T& vapour,
+ const VFPProdTable::GFR_TYPE& type) {
+ switch(type) {
+ case VFPProdTable::GFR_GOR:
+ // Gas-oil ratio = gas / oil
+ return zeroIfNan(vapour / liquid);
+ case VFPProdTable::GFR_GLR:
+ // Gas-liquid ratio = gas / (oil + water)
+ return zeroIfNan(vapour / (liquid + aqua));
+ case VFPProdTable::GFR_OGR:
+ // Oil-gas ratio = oil / gas
+ return zeroIfNan(liquid / vapour);
+ case VFPProdTable::GFR_INVALID: //Intentional fall-through
+ default:
+ OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
+ }
+}
+
+
+
+
+
+
+/**
+ * Helper struct for linear interpolation
+ */
+struct InterpData {
+ InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
+ int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
+ double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
+ double factor_; // Interpolation factor
+};
+
+
+
+
+
+
+/**
+ * Helper function to find indices etc. for linear interpolation
+ */
+inline InterpData findInterpData(const double& value, const std::vector& values) {
+ InterpData retval;
+
+ //If we only have one value in our vector, return that
+ if (values.size() == 1) {
+ retval.ind_[0] = 0;
+ retval.ind_[1] = 0;
+ retval.inv_dist_ = 0.0;
+ retval.factor_ = 0.0;
+ }
+ // Else search in the vector
+ else {
+ //First element greater than or equal to value
+ //Start with the second element, so that floor_iter does not go out of range
+ //Don't access out-of-range, therefore values.end()-1
+ auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
+
+ //Find last element smaller than range
+ auto floor_iter = ceil_iter-1;
+
+ //Find the indices
+ retval.ind_[0] = floor_iter - values.begin();
+ retval.ind_[1] = ceil_iter - values.begin();
+
+ //Find interpolation ratio
+ double dist = (*ceil_iter - *floor_iter);
+ if (std::abs(dist) > 0.0) {
+ //Possible source for floating point error here if value and floor are large,
+ //but very close to each other
+ retval.inv_dist_ = 1.0 / dist;
+ retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
+ }
+ else {
+ retval.inv_dist_ = 0.0;
+ retval.factor_ = 0.0;
+ }
+ }
+
+ return retval;
+}
+
+
+
+
+
+
+
+/**
+ * Helper function which interpolates data using the indices etc. given in the inputs.
+ */
+#ifdef __GNUC__
+#pragma GCC push_options
+#pragma GCC optimize ("unroll-loops")
+#endif
+inline VFPProdProperties::adb_like interpolate(
+ const VFPProdTable::array_type& array,
+ const InterpData& flo_i,
+ const InterpData& thp_i,
+ const InterpData& wfr_i,
+ const InterpData& gfr_i,
+ const InterpData& alq_i) {
+
+ //Values and derivatives in a 5D hypercube
+ VFPProdProperties::adb_like nn[2][2][2][2][2];
+
+
+ //Pick out nearest neighbors (nn) to our evaluation point
+ //This is not really required, but performance-wise it may pay off, since the 32-elements
+ //we copy to (nn) will fit better in cache than the full original table for the
+ //interpolation below.
+ //The following ladder of for loops will presumably be unrolled by a reasonable compiler.
+ for (int t=0; t<=1; ++t) {
+ for (int w=0; w<=1; ++w) {
+ for (int g=0; g<=1; ++g) {
+ for (int a=0; a<=1; ++a) {
+ for (int f=0; f<=1; ++f) {
+ //Shorthands for indexing
+ const int ti = thp_i.ind_[t];
+ const int wi = wfr_i.ind_[w];
+ const int gi = gfr_i.ind_[g];
+ const int ai = alq_i.ind_[a];
+ const int fi = flo_i.ind_[f];
+
+ //Copy element
+ nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
+ }
+ }
+ }
+ }
+ }
+
+ //Calculate derivatives
+ //Note that the derivative of the two end points of a line aligned with the
+ //"axis of the derivative" are equal
+ for (int i=0; i<=1; ++i) {
+ for (int j=0; j<=1; ++j) {
+ for (int k=0; k<=1; ++k) {
+ for (int l=0; l<=1; ++l) {
+ nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
+ nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
+ nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
+ nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
+ nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
+
+ nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
+ nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
+ nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
+ nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
+ nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
+ }
+ }
+ }
+ }
+
+ double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
+
+ // Remove dimensions one by one
+ // Example: going from 3D to 2D to 1D, we start by interpolating along
+ // the z axis first, leaving a 2D problem. Then interpolating along the y
+ // axis, leaving a 1D, problem, etc.
+ t2 = flo_i.factor_;
+ t1 = (1.0-t2);
+ for (int t=0; t<=1; ++t) {
+ for (int w=0; w<=1; ++w) {
+ for (int g=0; g<=1; ++g) {
+ for (int a=0; a<=1; ++a) {
+ nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
+ }
+ }
+ }
+ }
+
+ t2 = alq_i.factor_;
+ t1 = (1.0-t2);
+ for (int t=0; t<=1; ++t) {
+ for (int w=0; w<=1; ++w) {
+ for (int g=0; g<=1; ++g) {
+ nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
+ }
+ }
+ }
+
+ t2 = gfr_i.factor_;
+ t1 = (1.0-t2);
+ for (int t=0; t<=1; ++t) {
+ for (int w=0; w<=1; ++w) {
+ nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
+ }
+ }
+
+ t2 = wfr_i.factor_;
+ t1 = (1.0-t2);
+ for (int t=0; t<=1; ++t) {
+ nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
+ }
+
+ t2 = thp_i.factor_;
+ t1 = (1.0-t2);
+ nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
+
+ return nn[0][0][0][0][0];
+}
+
+#ifdef __GNUC__
+#pragma GCC pop_options //unroll loops
+#endif
+
+
+
+
+
+} // namespace detail
+
+
+} // namespace
+
+
+
+
+#endif /* OPM_AUTODIFF_VFPHELPERS_HPP_ */
diff --git a/opm/autodiff/VFPProdProperties.cpp b/opm/autodiff/VFPProdProperties.cpp
index bd02e04e5..c17fe1fd4 100644
--- a/opm/autodiff/VFPProdProperties.cpp
+++ b/opm/autodiff/VFPProdProperties.cpp
@@ -23,57 +23,13 @@
#include
#include
+#include
+
namespace Opm {
-
-
-
-
-VFPProdProperties::VFPProdProperties() {
-
-}
-
-VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
- m_tables[table->getTableNum()] = table;
-}
-
-
-VFPProdProperties::VFPProdProperties(const std::map& tables) {
- init(tables);
-}
-
-
-
-
-
-void VFPProdProperties::init(const std::map& prod_tables) {
- //Populate production table pointers
- for (const auto& table : prod_tables) {
- m_tables[table.first] = &table.second;
- }
-}
-
-VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector& table_id,
- const Wells& wells,
- const ADB& qs,
- const ADB& thp,
- const ADB& alq) const {
- const int np = wells.number_of_phases;
- const int nw = wells.number_of_wells;
-
- //Short-hands for water / oil / gas phases
- //TODO enable support for two-phase.
- assert(np == 3);
- const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
- const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
- const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
-
- return bhp(table_id, w, o, g, thp, alq);
-}
-
namespace detail {
/**
* Returns the type variable for FLO/GFR/WFR
@@ -111,7 +67,7 @@ namespace detail {
const VFPProdProperties::ADB& liquid,
const VFPProdProperties::ADB& vapour,
VFPProdTable::FLO_TYPE type) {
- return VFPProdProperties::getFlo(aqua, liquid, vapour, type);
+ return detail::getFlo(aqua, liquid, vapour, type);
}
template <>
@@ -120,7 +76,7 @@ namespace detail {
const VFPProdProperties::ADB& liquid,
const VFPProdProperties::ADB& vapour,
VFPProdTable::WFR_TYPE type) {
- return VFPProdProperties::getWFR(aqua, liquid, vapour, type);
+ return detail::getWFR(aqua, liquid, vapour, type);
}
template <>
@@ -129,7 +85,7 @@ namespace detail {
const VFPProdProperties::ADB& liquid,
const VFPProdProperties::ADB& vapour,
VFPProdTable::GFR_TYPE type) {
- return VFPProdProperties::getGFR(aqua, liquid, vapour, type);
+ return detail::getGFR(aqua, liquid, vapour, type);
}
/**
@@ -200,6 +156,12 @@ namespace detail {
return retval;
}
+
+
+
+ /**
+ * Sets block_pattern to be the "union of x.blockPattern() and block_pattern".
+ */
void extendBlockPattern(const VFPProdProperties::ADB& x, std::vector& block_pattern) {
std::vector x_block_pattern = x.blockPattern();
@@ -219,6 +181,9 @@ namespace detail {
}
}
+ /**
+ * Finds the common block pattern for all inputs
+ */
std::vector commonBlockPattern(
const VFPProdProperties::ADB& x1,
const VFPProdProperties::ADB& x2,
@@ -236,8 +201,109 @@ namespace detail {
return block_pattern;
}
+ /**
+ * Helper function that finds x for a given value of y for a line
+ * *NOTE ORDER OF ARGUMENTS*
+ */
+ double findX(const double& x0,
+ const double& x1,
+ const double& y0,
+ const double& y1,
+ const double& y) {
+ const double dx = x1 - x0;
+ const double dy = y1 - y0;
+
+ /**
+ * y = y0 + (dy / dx) * (x - x0)
+ * => x = x0 + (y - y0) * (dx / dy)
+ *
+ * If dy is zero, use x1 as the value.
+ */
+
+ double x = 0.0;
+
+ if (dy != 0.0) {
+ x = x0 + (y-y0) * (dx/dy);
+ }
+ else {
+ x = x1;
+ }
+
+ return x;
+ }
} //Namespace
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+VFPProdProperties::VFPProdProperties() {
+
+}
+
+
+
+VFPProdProperties::VFPProdProperties(const VFPProdTable* table){
+ m_tables[table->getTableNum()] = table;
+}
+
+
+
+
+VFPProdProperties::VFPProdProperties(const std::map& tables) {
+ init(tables);
+}
+
+
+
+void VFPProdProperties::init(const std::map& prod_tables) {
+ //Populate production table pointers
+ for (const auto& table : prod_tables) {
+ m_tables[table.first] = &table.second;
+ }
+}
+
+
+
+VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector& table_id,
+ const Wells& wells,
+ const ADB& qs,
+ const ADB& thp,
+ const ADB& alq) const {
+ const int np = wells.number_of_phases;
+ const int nw = wells.number_of_wells;
+
+ //Short-hands for water / oil / gas phases
+ //TODO enable support for two-phase.
+ assert(np == 3);
+ const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw));
+ const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw));
+ const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw));
+
+ return bhp(table_id, w, o, g, thp, alq);
+}
+
+
+
+
+
+
VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector& table_id,
const ADB& aqua,
const ADB& liquid,
@@ -281,13 +347,13 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector& table_id,
const VFPProdTable* table = well_tables[i];
if (table != NULL) {
//First, find the values to interpolate between
- auto flo_i = find_interp_data(flo.value()[i], table->getFloAxis());
- auto thp_i = find_interp_data(thp.value()[i], table->getTHPAxis());
- auto wfr_i = find_interp_data(wfr.value()[i], table->getWFRAxis());
- auto gfr_i = find_interp_data(gfr.value()[i], table->getGFRAxis());
- auto alq_i = find_interp_data(alq.value()[i], table->getALQAxis());
+ auto flo_i = detail::findInterpData(flo.value()[i], table->getFloAxis());
+ auto thp_i = detail::findInterpData(thp.value()[i], table->getTHPAxis());
+ auto wfr_i = detail::findInterpData(wfr.value()[i], table->getWFRAxis());
+ auto gfr_i = detail::findInterpData(gfr.value()[i], table->getGFRAxis());
+ auto alq_i = detail::findInterpData(alq.value()[i], table->getALQAxis());
- adb_like bhp_val = interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
+ adb_like bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
value[i] = bhp_val.value;
dthp[i] = bhp_val.dthp;
@@ -337,6 +403,9 @@ VFPProdProperties::ADB VFPProdProperties::bhp(const std::vector& table_id,
return retval;
}
+
+
+
VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id,
const double& aqua,
const double& liquid,
@@ -346,23 +415,26 @@ VFPProdProperties::adb_like VFPProdProperties::bhp(int table_id,
const VFPProdTable* table = getProdTable(table_id);
//Find interpolation variables
- double flo = getFlo(aqua, liquid, vapour, table->getFloType());
- double wfr = getWFR(aqua, liquid, vapour, table->getWFRType());
- double gfr = getGFR(aqua, liquid, vapour, table->getGFRType());
+ double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
+ double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
+ double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
//First, find the values to interpolate between
- auto flo_i = find_interp_data(flo, table->getFloAxis());
- auto thp_i = find_interp_data(thp, table->getTHPAxis());
- auto wfr_i = find_interp_data(wfr, table->getWFRAxis());
- auto gfr_i = find_interp_data(gfr, table->getGFRAxis());
- auto alq_i = find_interp_data(alq, table->getALQAxis());
+ auto flo_i = detail::findInterpData(flo, table->getFloAxis());
+ auto thp_i = detail::findInterpData(thp, table->getTHPAxis());
+ auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
+ auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
+ auto alq_i = detail::findInterpData(alq, table->getALQAxis());
//Then perform the interpolation itself
- adb_like retval = interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
+ adb_like retval = detail::interpolate(table->getTable(), flo_i, thp_i, wfr_i, gfr_i, alq_i);
return retval;
}
+
+
+
double VFPProdProperties::thp(int table_id,
const double& aqua,
const double& liquid,
@@ -375,9 +447,9 @@ double VFPProdProperties::thp(int table_id,
double thp = -1e100;
//Find interpolation variables
- double flo = getFlo(aqua, liquid, vapour, table->getFloType());
- double wfr = getWFR(aqua, liquid, vapour, table->getWFRType());
- double gfr = getGFR(aqua, liquid, vapour, table->getGFRType());
+ double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType());
+ double wfr = detail::getWFR(aqua, liquid, vapour, table->getWFRType());
+ double gfr = detail::getGFR(aqua, liquid, vapour, table->getGFRType());
/**
* Get THP axis, assume that it is sorted
@@ -391,14 +463,14 @@ double VFPProdProperties::thp(int table_id,
* by interpolating for every value of thp. This might be somewhat
* expensive, but let us assome that nthp is small
*/
- auto flo_i = find_interp_data(flo, table->getFloAxis());
- auto wfr_i = find_interp_data(wfr, table->getWFRAxis());
- auto gfr_i = find_interp_data(gfr, table->getGFRAxis());
- auto alq_i = find_interp_data(alq, table->getALQAxis());
+ auto flo_i = detail::findInterpData(flo, table->getFloAxis());
+ auto wfr_i = detail::findInterpData(wfr, table->getWFRAxis());
+ auto gfr_i = detail::findInterpData(gfr, table->getGFRAxis());
+ auto alq_i = detail::findInterpData(alq, table->getALQAxis());
std::vector bhp_array(nthp);
for (int i=0; i bhp_array[nthp-1]) {
@@ -424,7 +496,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[nthp-1];
const double& y0 = bhp_array[nthp-2];
const double& y1 = bhp_array[nthp-1];
- thp = find_x(x0, x1, y0, y1, bhp);
+ thp = detail::findX(x0, x1, y0, y1, bhp);
}
//Target bhp within table ranges, interpolate
else {
@@ -452,7 +524,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[i+1];
const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1];
- thp = find_x(x0, x1, y0, y1, bhp);
+ thp = detail::findX(x0, x1, y0, y1, bhp);
}
}
//bhp_array not sorted, raw search.
@@ -476,7 +548,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[i+1];
const double& y0 = bhp_array[i ];
const double& y1 = bhp_array[i+1];
- thp = find_x(x0, x1, y0, y1, bhp);
+ thp = detail::findX(x0, x1, y0, y1, bhp);
}
else if (bhp <= bhp_array[0]) {
//TODO: LOG extrapolation
@@ -484,7 +556,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[1];
const double& y0 = bhp_array[0];
const double& y1 = bhp_array[1];
- thp = find_x(x0, x1, y0, y1, bhp);
+ thp = detail::findX(x0, x1, y0, y1, bhp);
}
//Target bhp greater than all values in array, extrapolate
else if (bhp > bhp_array[nthp-1]) {
@@ -493,7 +565,7 @@ double VFPProdProperties::thp(int table_id,
const double& x1 = thp_array[nthp-1];
const double& y0 = bhp_array[nthp-2];
const double& y1 = bhp_array[nthp-1];
- thp = find_x(x0, x1, y0, y1, bhp);
+ thp = detail::findX(x0, x1, y0, y1, bhp);
}
else {
OPM_THROW(std::logic_error, "Programmer error: Unable to find THP in THP array");
@@ -505,6 +577,9 @@ double VFPProdProperties::thp(int table_id,
+
+
+
const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const {
auto entry = m_tables.find(table_id);
if (entry == m_tables.end()) {
@@ -515,193 +590,10 @@ const VFPProdTable* VFPProdProperties::getProdTable(int table_id) const {
}
}
-VFPProdProperties::InterpData VFPProdProperties::find_interp_data(const double& value, const std::vector& values) {
- InterpData retval;
-
- //If we only have one value in our vector, return that
- if (values.size() == 1) {
- retval.ind_[0] = 0;
- retval.ind_[1] = 0;
- retval.inv_dist_ = 0.0;
- retval.factor_ = 0.0;
- }
- // Else search in the vector
- else {
- //First element greater than or equal to value
- //Start with the second element, so that floor_iter does not go out of range
- //Don't access out-of-range, therefore values.end()-1
- auto ceil_iter = std::lower_bound(values.begin()+1, values.end()-1, value);
-
- //Find last element smaller than range
- auto floor_iter = ceil_iter-1;
-
- //Find the indices
- retval.ind_[0] = floor_iter - values.begin();
- retval.ind_[1] = ceil_iter - values.begin();
-
- //Find interpolation ratio
- double dist = (*ceil_iter - *floor_iter);
- if (std::abs(dist) > 0.0) {
- //Possible source for floating point error here if value and floor are large,
- //but very close to each other
- retval.inv_dist_ = 1.0 / dist;
- retval.factor_ = (value-*floor_iter) * retval.inv_dist_;
- }
- else {
- retval.inv_dist_ = 0.0;
- retval.factor_ = 0.0;
- }
- }
-
- return retval;
-}
-#ifdef __GNUC__
-#pragma GCC push_options
-#pragma GCC optimize ("unroll-loops")
-#endif
-
-VFPProdProperties::adb_like VFPProdProperties::interpolate(
- const VFPProdTable::array_type& array,
- const InterpData& flo_i,
- const InterpData& thp_i,
- const InterpData& wfr_i,
- const InterpData& gfr_i,
- const InterpData& alq_i) {
-
- //Values and derivatives in a 5D hypercube
- adb_like nn[2][2][2][2][2];
- //Pick out nearest neighbors (nn) to our evaluation point
- //This is not really required, but performance-wise it may pay off, since the 32-elements
- //we copy to (nn) will fit better in cache than the full original table for the
- //interpolation below.
- //The following ladder of for loops will presumably be unrolled by a reasonable compiler.
- for (int t=0; t<=1; ++t) {
- for (int w=0; w<=1; ++w) {
- for (int g=0; g<=1; ++g) {
- for (int a=0; a<=1; ++a) {
- for (int f=0; f<=1; ++f) {
- //Shorthands for indexing
- const int ti = thp_i.ind_[t];
- const int wi = wfr_i.ind_[w];
- const int gi = gfr_i.ind_[g];
- const int ai = alq_i.ind_[a];
- const int fi = flo_i.ind_[f];
-
- //Copy element
- nn[t][w][g][a][f].value = array[ti][wi][gi][ai][fi];
- }
- }
- }
- }
- }
-
- //Calculate derivatives
- //Note that the derivative of the two end points of a line aligned with the
- //"axis of the derivative" are equal
- for (int i=0; i<=1; ++i) {
- for (int j=0; j<=1; ++j) {
- for (int k=0; k<=1; ++k) {
- for (int l=0; l<=1; ++l) {
- nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
- nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
- nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
- nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
- nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
-
- nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
- nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
- nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
- nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
- nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
- }
- }
- }
- }
-
- double t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
-
- // Remove dimensions one by one
- // Example: going from 3D to 2D to 1D, we start by interpolating along
- // the z axis first, leaving a 2D problem. Then interpolating along the y
- // axis, leaving a 1D, problem, etc.
- t2 = flo_i.factor_;
- t1 = (1.0-t2);
- for (int t=0; t<=1; ++t) {
- for (int w=0; w<=1; ++w) {
- for (int g=0; g<=1; ++g) {
- for (int a=0; a<=1; ++a) {
- nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
- }
- }
- }
- }
-
- t2 = alq_i.factor_;
- t1 = (1.0-t2);
- for (int t=0; t<=1; ++t) {
- for (int w=0; w<=1; ++w) {
- for (int g=0; g<=1; ++g) {
- nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
- }
- }
- }
-
- t2 = gfr_i.factor_;
- t1 = (1.0-t2);
- for (int t=0; t<=1; ++t) {
- for (int w=0; w<=1; ++w) {
- nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
- }
- }
-
- t2 = wfr_i.factor_;
- t1 = (1.0-t2);
- for (int t=0; t<=1; ++t) {
- nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
- }
-
- t2 = thp_i.factor_;
- t1 = (1.0-t2);
- nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
-
- return nn[0][0][0][0][0];
-}
-
-#ifdef __GNUC__
-#pragma GCC pop_options //unroll loops
-#endif
-
-
-double VFPProdProperties::find_x(const double& x0,
- const double& x1,
- const double& y0,
- const double& y1,
- const double& y) {
- const double dx = x1 - x0;
- const double dy = y1 - y0;
-
- /**
- * y = y0 + (dy / dx) * (x - x0)
- * => x = x0 + (y - y0) * (dx / dy)
- *
- * If dy is zero, use x1 as the value.
- */
-
- double x = 0.0;
-
- if (dy != 0.0) {
- x = x0 + (y-y0) * (dx/dy);
- }
- else {
- x = x1;
- }
-
- return x;
-}
diff --git a/opm/autodiff/VFPProdProperties.hpp b/opm/autodiff/VFPProdProperties.hpp
index d62723687..d93d3c239 100644
--- a/opm/autodiff/VFPProdProperties.hpp
+++ b/opm/autodiff/VFPProdProperties.hpp
@@ -152,117 +152,11 @@ public:
const double& bhp,
const double& alq) const;
- /**
- * Computes the flo parameter according to the flo_type_
- * @return Production rate of oil, gas or liquid.
- */
- template
- static T getFlo(const T& aqua, const T& liquid, const T& vapour,
- const VFPProdTable::FLO_TYPE& type) {
- switch (type) {
- case VFPProdTable::FLO_OIL:
- //Oil = liquid phase
- return liquid;
- case VFPProdTable::FLO_LIQ:
- //Liquid = aqua + liquid phases
- return aqua + liquid;
- case VFPProdTable::FLO_GAS:
- //Gas = vapor phase
- return vapour;
- case VFPProdTable::FLO_INVALID: //Intentional fall-through
- default:
- OPM_THROW(std::logic_error, "Invalid FLO_TYPE: '" << type << "'");
- }
- }
-
-
- /**
- * Computes the wfr parameter according to the wfr_type_
- * @return Production rate of oil, gas or liquid.
- */
- template
- static T getWFR(const T& aqua, const T& liquid, const T& vapour,
- const VFPProdTable::WFR_TYPE& type) {
- switch(type) {
- case VFPProdTable::WFR_WOR: {
- //Water-oil ratio = water / oil
- T wor = aqua / liquid;
- return zeroIfNan(wor);
- }
- case VFPProdTable::WFR_WCT:
- //Water cut = water / (water + oil)
- return zeroIfNan(aqua / (aqua + liquid));
- case VFPProdTable::WFR_WGR:
- //Water-gas ratio = water / gas
- return zeroIfNan(aqua / vapour);
- case VFPProdTable::WFR_INVALID: //Intentional fall-through
- default:
- OPM_THROW(std::logic_error, "Invalid WFR_TYPE: '" << type << "'");
- }
- }
-
- /**
- * Computes the gfr parameter according to the gfr_type_
- * @return Production rate of oil, gas or liquid.
- */
- template
- static T getGFR(const T& aqua, const T& liquid, const T& vapour,
- const VFPProdTable::GFR_TYPE& type) {
- switch(type) {
- case VFPProdTable::GFR_GOR:
- // Gas-oil ratio = gas / oil
- return zeroIfNan(vapour / liquid);
- case VFPProdTable::GFR_GLR:
- // Gas-liquid ratio = gas / (oil + water)
- return zeroIfNan(vapour / (liquid + aqua));
- case VFPProdTable::GFR_OGR:
- // Oil-gas ratio = oil / gas
- return zeroIfNan(liquid / vapour);
- case VFPProdTable::GFR_INVALID: //Intentional fall-through
- default:
- OPM_THROW(std::logic_error, "Invalid GFR_TYPE: '" << type << "'");
- }
- }
-
private:
// Map which connects the table number with the table itself
std::map m_tables;
- /**
- * Helper struct for linear interpolation
- */
- struct InterpData {
- InterpData() : ind_{0, 0}, inv_dist_(0.0), factor_(0.0) {}
- int ind_[2]; //[First element greater than or equal to value, Last element smaller than or equal to value]
- double inv_dist_; // 1 / distance between the two end points of the segment. Used to calculate derivatives and uses 1.0 / 0.0 = 0.0 as a convention
- double factor_; // Interpolation factor
- };
-
- /**
- * Helper function to find indices etc. for linear interpolation
- */
- static InterpData find_interp_data(const double& value, const std::vector& values);
-
- /**
- * Helper function which interpolates data using the indices etc. given in the inputs.
- */
- static adb_like interpolate(const VFPProdTable::array_type& array,
- const InterpData& flo_i,
- const InterpData& thp_i,
- const InterpData& wfr_i,
- const InterpData& gfr_i,
- const InterpData& alq_i);
-
- /**
- * Helper function that finds x for a given value of y for a line
- * *NOTE ORDER OF ARGUMENTS*
- */
- static double find_x(const double& x0,
- const double& x1,
- const double& y0,
- const double& y1,
- const double& y);
/**
@@ -275,19 +169,6 @@ private:
*/
const VFPProdTable* getProdTable(int table_id) const;
- static inline double zeroIfNan(const double& value) {
- return (std::isnan(value)) ? 0.0 : value;
- }
-
- static inline ADB zeroIfNan(const ADB& values) {
- Selector not_nan_selector(values.value(), Selector::NotNaN);
-
- const ADB::V z = ADB::V::Zero(values.size());
- const ADB zero = ADB::constant(z, values.blockPattern());
-
- ADB retval = not_nan_selector.select(values, zero);
- return retval;
- }
};
diff --git a/tests/test_vfpproperties.cpp b/tests/test_vfpproperties.cpp
index b293e26ba..c77b81e9e 100644
--- a/tests/test_vfpproperties.cpp
+++ b/tests/test_vfpproperties.cpp
@@ -42,11 +42,182 @@
#include
#include
+#include
const double max_d_tol = 1.0e-10;
const double sad_tol = 1.0e-8;
+
+
+
+
+
+
+
+
+
+struct ConversionFixture {
+ typedef Opm::VFPProdProperties::ADB ADB;
+
+ ConversionFixture() :
+ num_wells(5),
+ aqua(ADB::null()),
+ liquid(ADB::null()),
+ vapour(ADB::null())
+ {
+ ADB::V aqua_v(num_wells);
+ ADB::V liquid_v(num_wells);
+ ADB::V vapour_v(num_wells);
+
+ for (int i=0; i ref_flo_oil(num_wells);
+ std::vector ref_flo_liq(num_wells);
+ std::vector ref_flo_gas(num_wells);
+ for (int i=0; i ref_wfr_wor(num_wells);
+ std::vector ref_wfr_wct(num_wells);
+ std::vector ref_wfr_wgr(num_wells);
+ for (int i=0; i ref_gfr_gor(num_wells);
+ std::vector ref_gfr_glr(num_wells);
+ std::vector ref_gfr_ogr(num_wells);
+ for (int i=0; i(n);
//Find values that should be in table
- double flo = properties->getFlo(aqua, liquid, vapour, table.getFloType());
- double wfr = properties->getWFR(aqua, liquid, vapour, table.getWFRType());
- double gfr = properties->getGFR(aqua, liquid, vapour, table.getGFRType());
+ double flo = Opm::detail::getFlo(aqua, liquid, vapour, table.getFloType());
+ double wfr = Opm::detail::getWFR(aqua, liquid, vapour, table.getWFRType());
+ double gfr = Opm::detail::getGFR(aqua, liquid, vapour, table.getGFRType());
//Calculate reference
adb_like reference;
@@ -437,9 +608,9 @@ BOOST_AUTO_TEST_CASE(ExtrapolatePlane)
const double liquid = m / static_cast(n);
//Find values that should be in table
- double v = properties->getFlo(aqua, liquid, vapour, table.getFloType());
- double y = properties->getWFR(aqua, liquid, vapour, table.getWFRType());
- double z = properties->getGFR(aqua, liquid, vapour, table.getGFRType());
+ double v = Opm::detail::getFlo(aqua, liquid, vapour, table.getFloType());
+ double y = Opm::detail::getWFR(aqua, liquid, vapour, table.getWFRType());
+ double z = Opm::detail::getGFR(aqua, liquid, vapour, table.getGFRType());
double reference = x + 2*y + 3*z+ 4*u + 5*v;
reference_sum += reference;
@@ -524,9 +695,9 @@ BOOST_AUTO_TEST_CASE(ExtrapolatePlaneADB)
double reference = 0.0;
for (int w=0; w < num_wells; ++w) {
//Find values that should be in table
- double v = properties->getFlo(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getFloType());
- double y = properties->getWFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getWFRType());
- double z = properties->getGFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getGFRType());
+ double v = Opm::detail::getFlo(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getFloType());
+ double y = Opm::detail::getWFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getWFRType());
+ double z = Opm::detail::getGFR(aqua*(w+1), liquid*(w+1), vapour*(w+1), table.getGFRType());
reference = x*(w+1) + 2*y + 3*z + 4*u*(w+1) + 5*v;
value = bhp_val[w];
@@ -668,155 +839,6 @@ BOOST_AUTO_TEST_SUITE_END() // Trivial tests
-struct ConversionFixture {
- typedef Opm::VFPProdProperties::ADB ADB;
-
- ConversionFixture() :
- num_wells(5),
- aqua(ADB::null()),
- liquid(ADB::null()),
- vapour(ADB::null())
- {
- ADB::V aqua_v(num_wells);
- ADB::V liquid_v(num_wells);
- ADB::V vapour_v(num_wells);
-
- for (int i=0; i ref_flo_oil(num_wells);
- std::vector ref_flo_liq(num_wells);
- std::vector ref_flo_gas(num_wells);
- for (int i=0; i ref_wfr_wor(num_wells);
- std::vector ref_wfr_wct(num_wells);
- std::vector ref_wfr_wgr(num_wells);
- for (int i=0; i ref_gfr_gor(num_wells);
- std::vector ref_gfr_glr(num_wells);
- std::vector ref_gfr_ogr(num_wells);
- for (int i=0; i