mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
fixing compilation and running after rebasing.
This commit is contained in:
parent
ca5dd0dca4
commit
09f8da0324
@ -134,6 +134,8 @@ namespace Opm {
|
||||
ReservoirState& reservoir_state,
|
||||
WellState& well_state);
|
||||
using Base::numPhases;
|
||||
using Base::numMaterials;
|
||||
using Base::materialName;
|
||||
|
||||
protected:
|
||||
/*
|
||||
|
@ -363,8 +363,15 @@ namespace Opm {
|
||||
const V depth = cellCentroidsZToEigen(grid_);
|
||||
const V pdepth = subset(depth, well_cells);
|
||||
std::vector<double> perf_depth(pdepth.data(), pdepth.data() + nperf);
|
||||
|
||||
// Surface density.
|
||||
std::vector<double> surf_dens(fluid_.surfaceDensity(), fluid_.surfaceDensity() + pu.num_phases);
|
||||
DataBlock surf_dens(nperf, pu.num_phases);
|
||||
for (int phase = 0; phase < pu.num_phases; ++ phase) {
|
||||
surf_dens.col(phase) = V::Constant(nperf, fluid_.surfaceDensity()[pu.phase_pos[phase]]);
|
||||
}
|
||||
|
||||
std::vector<double> surf_dens_perf(surf_dens.data(), surf_dens.data() + nperf * pu.num_phases);
|
||||
|
||||
// Gravity
|
||||
double grav = detail::getGravity(geo_.gravity(), dimensions(grid_));
|
||||
|
||||
@ -372,7 +379,7 @@ namespace Opm {
|
||||
std::vector<double> cd =
|
||||
WellDensitySegmented::computeConnectionDensities(
|
||||
wells(), xw, fluid_.phaseUsage(),
|
||||
b_perf, rsmax_perf, rvmax_perf, surf_dens);
|
||||
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
||||
|
||||
// 3. Compute pressure deltas
|
||||
std::vector<double> cdp =
|
||||
@ -1579,102 +1586,115 @@ namespace Opm {
|
||||
const double tol_wells = param_.tolerance_wells_;
|
||||
|
||||
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
||||
// const int nw = localWellsActive() ? wells().number_of_wells : 0;
|
||||
const int nw = wellsMultiSegment().size();
|
||||
// no good way to store nseg?
|
||||
int nseg_total = 0;
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
nseg_total += wellsMultiSegment()[w]->numberOfSegments();
|
||||
}
|
||||
|
||||
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
||||
const int np = numPhases();
|
||||
const int nm = numMaterials();
|
||||
assert(int(rq_.size()) == nm);
|
||||
|
||||
const V pv = geo_.poreVolume();
|
||||
|
||||
const std::vector<PhasePresence> cond = phaseCondition();
|
||||
std::vector<double> R_sum(nm);
|
||||
std::vector<double> B_avg(nm);
|
||||
std::vector<double> maxCoeff(nm);
|
||||
std::vector<double> maxNormWell(np);
|
||||
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, nm);
|
||||
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, nm);
|
||||
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, nm);
|
||||
|
||||
std::array<double,MaxNumPhases> CNV = {{0., 0., 0.}};
|
||||
std::array<double,MaxNumPhases> R_sum = {{0., 0., 0.}};
|
||||
std::array<double,MaxNumPhases> B_avg = {{0., 0., 0.}};
|
||||
std::array<double,MaxNumPhases> maxCoeff = {{0., 0., 0.}};
|
||||
std::array<double,MaxNumPhases> mass_balance_residual = {{0., 0., 0.}};
|
||||
std::array<double,MaxNumPhases> well_flux_residual = {{0., 0., 0.}};
|
||||
std::size_t cols = MaxNumPhases; // needed to pass the correct type to Eigen
|
||||
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases> B(nc, cols);
|
||||
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases> R(nc, cols);
|
||||
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases> tempV(nc, cols);
|
||||
std::vector<double> maxNormWell(MaxNumPhases);
|
||||
|
||||
for ( int idx=0; idx<MaxNumPhases; ++idx )
|
||||
for ( int idx = 0; idx < nm; ++idx )
|
||||
{
|
||||
if (active_[idx]) {
|
||||
const int pos = pu.phase_pos[idx];
|
||||
const ADB& tempB = rq_[pos].b;
|
||||
B.col(idx) = 1./tempB.value();
|
||||
R.col(idx) = residual_.material_balance_eq[idx].value();
|
||||
tempV.col(idx) = R.col(idx).abs()/pv;
|
||||
}
|
||||
const ADB& tempB = rq_[idx].b;
|
||||
B.col(idx) = 1./tempB.value();
|
||||
R.col(idx) = residual_.material_balance_eq[idx].value();
|
||||
tempV.col(idx) = R.col(idx).abs()/pv;
|
||||
}
|
||||
|
||||
const double pvSum = convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg,
|
||||
maxNormWell, nc, nseg_total);
|
||||
const double pvSum = convergenceReduction(B, tempV, R,
|
||||
R_sum, maxCoeff, B_avg, maxNormWell,
|
||||
nc, nseg_total);
|
||||
|
||||
std::vector<double> CNV(nm);
|
||||
std::vector<double> mass_balance_residual(nm);
|
||||
std::vector<double> well_flux_residual(np);
|
||||
|
||||
bool converged_MB = true;
|
||||
bool converged_CNV = true;
|
||||
bool converged_Well = true;
|
||||
// Finish computation
|
||||
for ( int idx=0; idx<MaxNumPhases; ++idx )
|
||||
for ( int idx = 0; idx < nm; ++idx )
|
||||
{
|
||||
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
|
||||
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
|
||||
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
|
||||
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
|
||||
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
|
||||
|
||||
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
||||
// Well flux convergence is only for fluid phases, not other materials
|
||||
// in our current implementation.
|
||||
assert(nm >= np);
|
||||
if (idx < np) {
|
||||
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
|
||||
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
||||
}
|
||||
}
|
||||
|
||||
const double residualWell = detail::infinityNormWell(residual_.well_eq,
|
||||
linsolver_.parallelInformation());
|
||||
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
|
||||
const bool converged = converged_MB && converged_CNV && converged_Well;
|
||||
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
|
||||
const bool converged = converged_MB && converged_CNV && converged_Well;
|
||||
|
||||
// Residual in Pascal can have high values and still be ok.
|
||||
const double maxWellResidualAllowed = 1000.0 * maxResidualAllowed();
|
||||
|
||||
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
|
||||
if ( std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
|
||||
std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() ||
|
||||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() ||
|
||||
std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
|
||||
std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() ||
|
||||
std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() ||
|
||||
std::isnan(well_flux_residual[Water]) || well_flux_residual[Water] > maxResidualAllowed() ||
|
||||
std::isnan(well_flux_residual[Oil]) || well_flux_residual[Oil] > maxResidualAllowed() ||
|
||||
std::isnan(well_flux_residual[Gas]) || well_flux_residual[Gas] > maxResidualAllowed() ||
|
||||
std::isnan(residualWell) || residualWell > maxWellResidualAllowed )
|
||||
{
|
||||
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or too large!");
|
||||
for (int idx = 0; idx < nm; ++idx) {
|
||||
if (std::isnan(mass_balance_residual[idx])
|
||||
|| std::isnan(CNV[idx])
|
||||
|| (idx < np && std::isnan(well_flux_residual[idx]))) {
|
||||
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << materialName(idx));
|
||||
}
|
||||
if (mass_balance_residual[idx] > maxResidualAllowed()
|
||||
|| CNV[idx] > maxResidualAllowed()
|
||||
|| (idx < np && well_flux_residual[idx] > maxResidualAllowed())) {
|
||||
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << materialName(idx));
|
||||
}
|
||||
}
|
||||
if (std::isnan(residualWell) || residualWell > maxWellResidualAllowed) {
|
||||
OPM_THROW(Opm::NumericalProblem, "NaN or too large residual for well control equation");
|
||||
}
|
||||
|
||||
if ( terminal_output_ )
|
||||
{
|
||||
// Only rank 0 does print to std::cout
|
||||
if (iteration == 0) {
|
||||
std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) CNVW CNVO CNVG W-FLUX(W) W-FLUX(O) W-FLUX(G)\n";
|
||||
std::cout << "\nIter";
|
||||
for (int idx = 0; idx < nm; ++idx) {
|
||||
std::cout << " MB(" << materialName(idx).substr(0, 3) << ") ";
|
||||
}
|
||||
for (int idx = 0; idx < nm; ++idx) {
|
||||
std::cout << " CNV(" << materialName(idx).substr(0, 1) << ") ";
|
||||
}
|
||||
for (int idx = 0; idx < np; ++idx) {
|
||||
std::cout << " W-FLUX(" << materialName(idx).substr(0, 1) << ")";
|
||||
}
|
||||
std::cout << '\n';
|
||||
}
|
||||
const std::streamsize oprec = std::cout.precision(3);
|
||||
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
|
||||
std::cout << std::setw(4) << iteration
|
||||
<< std::setw(11) << mass_balance_residual[Water]
|
||||
<< std::setw(11) << mass_balance_residual[Oil]
|
||||
<< std::setw(11) << mass_balance_residual[Gas]
|
||||
<< std::setw(11) << CNV[Water]
|
||||
<< std::setw(11) << CNV[Oil]
|
||||
<< std::setw(11) << CNV[Gas]
|
||||
<< std::setw(11) << well_flux_residual[Water]
|
||||
<< std::setw(11) << well_flux_residual[Oil]
|
||||
<< std::setw(11) << well_flux_residual[Gas]
|
||||
<< std::endl;
|
||||
std::cout << std::setw(4) << iteration;
|
||||
for (int idx = 0; idx < nm; ++idx) {
|
||||
std::cout << std::setw(11) << mass_balance_residual[idx];
|
||||
}
|
||||
for (int idx = 0; idx < nm; ++idx) {
|
||||
std::cout << std::setw(11) << CNV[idx];
|
||||
}
|
||||
for (int idx = 0; idx < np; ++idx) {
|
||||
std::cout << std::setw(11) << well_flux_residual[idx];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
std::cout.precision(oprec);
|
||||
std::cout.flags(oflags);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user