mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 16:51:00 -06:00
added extra function for easier use in tracer,aquifer, threshold pressure
This commit is contained in:
parent
b1f1981f16
commit
0a178daaf1
@ -315,6 +315,100 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
static void volumeAndPhasePressureDifferences(short (&upIdx)[numPhases] ,
|
||||
Evaluation (&volumeFlux)[numPhases],
|
||||
Evaluation (&pressureDifferences)[numPhases],
|
||||
const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
||||
{
|
||||
|
||||
//Valgrind::SetUndefined(*this);
|
||||
|
||||
const auto& problem = elemCtx.problem();
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.interiorFace(scvfIdx);
|
||||
|
||||
unsigned interiorDofIdx = scvf.interiorIndex();
|
||||
unsigned exteriorDofIdx = scvf.exteriorIndex();
|
||||
assert(interiorDofIdx != exteriorDofIdx);
|
||||
|
||||
//unsigned I = stencil.globalSpaceIndex(interiorDofIdx_);
|
||||
//unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_);
|
||||
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
|
||||
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
|
||||
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
|
||||
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
|
||||
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
||||
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
||||
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
||||
|
||||
// this is quite hacky because the dune grid interface does not provide a
|
||||
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||||
// solution would be to take the Z coordinate of the element centroids, but since
|
||||
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||||
// here...
|
||||
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
||||
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
|
||||
|
||||
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||||
// exterior DOF)
|
||||
Scalar distZ = zIn - zEx;
|
||||
|
||||
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||||
continue;
|
||||
short dnIdx;
|
||||
calculatePhasePressureDiff_(upIdx[phaseIdx],
|
||||
dnIdx,
|
||||
pressureDifferences[phaseIdx],
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
scvfIdx,//input
|
||||
timeIdx,//input
|
||||
phaseIdx,//input
|
||||
interiorDofIdx,//input
|
||||
exteriorDofIdx,//intput
|
||||
Vin,
|
||||
Vex,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
distZ*g,
|
||||
thpres);
|
||||
if(pressureDifferences[phaseIdx] == 0){
|
||||
volumeFlux[phaseIdx] = 0.0;
|
||||
continue;
|
||||
}
|
||||
IntensiveQuantities up;
|
||||
unsigned globalIndex;
|
||||
if(upIdx[phaseIdx] == interiorDofIdx){
|
||||
up = intQuantsIn;
|
||||
globalIndex = globalIndexIn;
|
||||
}else{
|
||||
up = intQuantsEx;
|
||||
globalIndex = globalIndexEx;
|
||||
}
|
||||
// TODO: should the rock compaction transmissibility multiplier be upstreamed
|
||||
// or averaged? all fluids should see the same compaction?!
|
||||
//const auto& globalIndex = stencil.globalSpaceIndex(upstreamIdx);
|
||||
const Evaluation& transMult =
|
||||
problem.template rockCompTransMultiplier<Evaluation>(up, globalIndex);
|
||||
|
||||
if (upIdx[phaseIdx] == interiorDofIdx)
|
||||
volumeFlux[phaseIdx] =
|
||||
pressureDifferences[phaseIdx]*up.mobility(phaseIdx)*transMult*(-trans/faceArea);
|
||||
else
|
||||
volumeFlux[phaseIdx] =
|
||||
pressureDifferences[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea));
|
||||
|
||||
}
|
||||
}
|
||||
protected:
|
||||
/*!
|
||||
* \brief Update the required gradients for interior faces
|
||||
|
Loading…
Reference in New Issue
Block a user