Implemented statically allocated memory for SparseMatrix

This commit is contained in:
babrodtk 2015-08-28 14:03:52 +02:00
parent df1d0f795d
commit 0b1f993588

View File

@ -24,7 +24,6 @@
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <boost/any.hpp>
#include <opm/core/utility/platform_dependent/reenable_warnings.h>
@ -76,7 +75,7 @@ namespace Opm
: type_(D),
rows_(d.rows()),
cols_(d.cols()),
data_(Diag(d.diagonal().array().data(), d.diagonal().array().data() + d.rows()))
diag_(Diag(d.diagonal().array().data(), d.diagonal().array().data() + d.rows()))
{
}
@ -85,15 +84,34 @@ namespace Opm
explicit AutoDiffMatrix(const Eigen::SparseMatrix<double>& s)
: type_(S),
rows_(s.rows()),
cols_(s.cols()),
data_(s)
cols_(s.cols())
{
sparse_[0] = s;
}
AutoDiffMatrix(const AutoDiffMatrix& other) = default;
AutoDiffMatrix& operator=(const AutoDiffMatrix& other) = default;
AutoDiffMatrix(const AutoDiffMatrix& other)
{
*this = other;
}
AutoDiffMatrix& operator=(const AutoDiffMatrix& other)
{
type_ = other.type_;
rows_ = other.rows_;
cols_ = other.cols_;
switch(type_) {
case D:
diag_ = other.diag_;
break;
case S:
sparse_[0] = other.sparse_[0];
break;
default:
break;
}
}
@ -118,7 +136,8 @@ namespace Opm
std::swap(type_, other.type_);
std::swap(rows_, other.rows_);
std::swap(cols_, other.cols_);
data_.swap(other.data_);
diag_.swap(other.diag_);
sparse_[0].swap(other.sparse_[0]);
}
@ -261,14 +280,13 @@ namespace Opm
{
AutoDiffMatrix retval(*this);
retval.type_ = D;
retval.data_ = boost::any(Diag(rows_, rhs));
retval.diag_ = Diag(rows_, rhs);
return retval;
}
case D:
{
AutoDiffMatrix retval(*this);
Diag& d = boost::any_cast<Diag&>(retval.data_);
for (double& elem : d) {
for (double& elem : retval.diag_) {
elem *= rhs;
}
return retval;
@ -276,8 +294,7 @@ namespace Opm
case S:
{
AutoDiffMatrix retval(*this);
Sparse& s = boost::any_cast<Sparse&>(retval.data_);
s *= rhs;
retval.sparse_[0] *= rhs;
return retval;
}
default:
@ -299,14 +316,13 @@ namespace Opm
{
AutoDiffMatrix retval(*this);
retval.type_ = D;
boost::any_cast<Diag&>(retval.data_).assign(rows_, 1.0/rhs);
retval.diag_.assign(rows_, 1.0/rhs);
return retval;
}
case D:
{
AutoDiffMatrix retval(*this);
Diag& d = boost::any_cast<Diag&>(retval.data_);
for (double& elem : d) {
for (double& elem : retval.diag_) {
elem /= rhs;
}
return retval;
@ -314,8 +330,7 @@ namespace Opm
case S:
{
AutoDiffMatrix retval(*this);
Sparse& s = boost::any_cast<Sparse&>(retval.data_);
s /= rhs;
retval.sparse_[0] /= rhs;
return retval;
}
default:
@ -338,13 +353,11 @@ namespace Opm
return rhs;
case D:
{
const Diag& d = boost::any_cast<const Diag&>(data_);
return Eigen::Map<const Eigen::VectorXd>(d.data(), rows_) * rhs;
return Eigen::Map<const Eigen::VectorXd>(diag_.data(), rows_) * rhs;
}
case S:
{
const Sparse& s = boost::any_cast<const Sparse&>(data_);
return s * rhs;
return sparse_[0] * rhs;
}
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
@ -364,7 +377,7 @@ namespace Opm
retval.type_ = D;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.data_ = boost::any(Diag(lhs.rows_, 2.0));
retval.diag_.assign(lhs.rows_, 2.0);
return retval;
}
@ -374,9 +387,8 @@ namespace Opm
assert(lhs.type_ == D);
assert(rhs.type_ == I);
AutoDiffMatrix retval = lhs;
Diag& d = boost::any_cast<Diag&>(retval.data_);
for (int r = 0; r < lhs.rows_; ++r) {
d[r] += 1.0;
retval.diag_[r] += 1.0;
}
return retval;
}
@ -386,10 +398,8 @@ namespace Opm
assert(lhs.type_ == D);
assert(rhs.type_ == D);
AutoDiffMatrix retval = lhs;
Diag& d_lhs = boost::any_cast<Diag&>(retval.data_);
const Diag& d_rhs = boost::any_cast<const Diag&>(rhs.data_);
for (int r = 0; r < lhs.rows_; ++r) {
d_lhs[r] += d_rhs[r];
retval.diag_[r] += rhs.diag_[r];
}
return retval;
}
@ -399,12 +409,11 @@ namespace Opm
assert(lhs.type_ == S);
assert(rhs.type_ == I);
AutoDiffMatrix retval;
Eigen::SparseMatrix<double> ident = spdiag(Eigen::VectorXd::Ones(lhs.rows_));
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
const Sparse& s = boost::any_cast<const Sparse&>(lhs.data_);
retval.data_ = static_cast<Sparse>(s + ident);
retval.sparse_[0] = lhs.sparse_[0];
retval.sparse_[0] += spdiag(Eigen::VectorXd::Ones(lhs.rows_));
return retval;
}
@ -413,12 +422,11 @@ namespace Opm
assert(lhs.type_ == S);
assert(rhs.type_ == D);
AutoDiffMatrix retval;
Sparse diag = spdiag(boost::any_cast<const Diag&>(rhs.data_));
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
const Sparse& s = boost::any_cast<const Sparse&>(lhs.data_);
retval.data_ = static_cast<Sparse>(s + diag);
retval.sparse_[0] = lhs.sparse_[0];
retval.sparse_[0] += spdiag(rhs.diag_);
return retval;
}
@ -426,13 +434,8 @@ namespace Opm
{
assert(lhs.type_ == S);
assert(rhs.type_ == S);
AutoDiffMatrix retval;
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
const Sparse& s_lhs = boost::any_cast<const Sparse&>(lhs.data_);
const Sparse& s_rhs = boost::any_cast<const Sparse&>(rhs.data_);
retval.data_ = static_cast<Sparse>(s_lhs + s_rhs);
AutoDiffMatrix retval = lhs;
retval.sparse_[0] += rhs.sparse_[0];
return retval;
}
@ -444,16 +447,9 @@ namespace Opm
{
assert(lhs.type_ == D);
assert(rhs.type_ == D);
AutoDiffMatrix retval;
retval.type_ = D;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.data_ = boost::any(Diag(lhs.rows_));
Diag& d = boost::any_cast<Diag&>(retval.data_);
const Diag& d_lhs = boost::any_cast<const Diag&>(lhs.data_);
const Diag& d_rhs = boost::any_cast<const Diag&>(rhs.data_);
AutoDiffMatrix retval = lhs;
for (int r = 0; r < lhs.rows_; ++r) {
d[r] = d_lhs[r] * d_rhs[r];
retval.diag_[r] *= rhs.diag_[r];
}
return retval;
}
@ -466,11 +462,8 @@ namespace Opm
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.data_ = boost::any(Sparse(retval.rows_, retval.cols_)); //FIXME: Superfluous?
const Diag& a = boost::any_cast<const Diag&>(lhs.data_);
const Sparse& b = boost::any_cast<const Sparse&>(rhs.data_);
Sparse& c = boost::any_cast<Sparse&>(retval.data_);
fastDiagSparseProduct(a, b, c);
retval.sparse_[0] = Sparse(retval.rows_, retval.cols_);
fastDiagSparseProduct(lhs.diag_, rhs.sparse_[0], retval.sparse_[0]);
return retval;
}
@ -482,11 +475,8 @@ namespace Opm
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.data_ = boost::any(Sparse(retval.rows_, retval.cols_)); //FIXME: Superfluous?
const Sparse& a = boost::any_cast<const Sparse&>(lhs.data_);
const Diag& b = boost::any_cast<const Diag&>(rhs.data_);
Sparse& c = boost::any_cast<Sparse&>(retval.data_);
fastSparseDiagProduct(a, b, c);
retval.sparse_[0] = Sparse(retval.rows_, retval.cols_);
fastSparseDiagProduct(lhs.sparse_[0], rhs.diag_, retval.sparse_[0]);
return retval;
}
@ -498,11 +488,8 @@ namespace Opm
retval.type_ = S;
retval.rows_ = lhs.rows_;
retval.cols_ = rhs.cols_;
retval.data_ = boost::any(Sparse(retval.rows_, retval.cols_)); //FIXME: Superfluous?
const Sparse& a = boost::any_cast<const Sparse&>(lhs.data_);
const Sparse& b = boost::any_cast<const Sparse&>(rhs.data_);
Sparse& c = boost::any_cast<Sparse&>(retval.data_);
fastSparseProduct(a, b, c);
retval.sparse_[0] = Sparse(retval.rows_, retval.cols_);
fastSparseProduct(lhs.sparse_[0], rhs.sparse_[0], retval.sparse_[0]);
return retval;
}
@ -518,10 +505,10 @@ namespace Opm
s = spdiag(Eigen::VectorXd::Ones(rows_));
return;
case D:
s = spdiag(boost::any_cast<const Diag&>(data_));
s = spdiag(diag_);
return;
case S:
s = boost::any_cast<const Sparse&>(data_);
s = sparse_[0];
return;
}
}
@ -547,7 +534,7 @@ namespace Opm
case D:
return rows_;
case S:
return boost::any_cast<const Sparse&>(data_).nonZeros();
return sparse_->nonZeros();
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
@ -562,9 +549,9 @@ namespace Opm
case I:
return (row == col) ? 1.0 : 0.0;
case D:
return (row == col) ? boost::any_cast<const Diag&>(data_)[row] : 0.0;
return (row == col) ? diag_[row] : 0.0;
case S:
return boost::any_cast<const Sparse&>(data_).coeff(row, col);
return sparse_->coeff(row, col);
default:
OPM_THROW(std::logic_error, "Invalid AutoDiffMatrix type encountered: " << type_);
}
@ -575,22 +562,24 @@ namespace Opm
MatrixType type_;
int rows_;
int cols_;
boost::any data_;
/*
std::vector<double> d_;
Eigen::SparseMatrix<double> s_;
*/
Diag diag_;
/**
* Eigen uses memory allocation within the default constructor, so that
* Sparse a; actually calls malloc. To prevent this, we here use
* Sparse a[1], and only construct the object when needed.
*/
Sparse sparse_[1];
template <class V>
static inline
Eigen::SparseMatrix<double>
Sparse
spdiag(const V& d)
{
typedef Eigen::SparseMatrix<double> M;
const int n = d.size();
M mat(n, n);
Sparse mat(n, n);
mat.reserve(Eigen::ArrayXi::Ones(n, 1));
for (M::Index i = 0; i < n; ++i) {
for (Sparse::Index i = 0; i < n; ++i) {
if (d[i] != 0.0) {
mat.insert(i, i) = d[i];
}