Refactor EclFluxModule.

This makes that class have the same methods as the EclFluxModuleTpfa, so
the latter can be removed.
This commit is contained in:
Atgeirr Flø Rasmussen 2022-07-06 10:26:31 +02:00
parent d61e578194
commit 0bf508daf7

View File

@ -100,6 +100,7 @@ class EclTransExtensiveQuantities
{
using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
@ -206,25 +207,26 @@ protected:
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{ asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); }
/*!
* \brief Update the required gradients for interior faces
*/
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
static void volumeAndPhasePressureDifferences(short (&upIdx)[numPhases],
short (&dnIdx)[numPhases],
Evaluation (&volumeFlux)[numPhases],
Evaluation (&pressureDifferences)[numPhases],
const ElementContext& elemCtx,
unsigned scvfIdx,
unsigned timeIdx)
{
Valgrind::SetUndefined(*this);
const auto& problem = elemCtx.problem();
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.interiorFace(scvfIdx);
unsigned interiorDofIdx = scvf.interiorIndex();
unsigned exteriorDofIdx = scvf.exteriorIndex();
interiorDofIdx_ = scvf.interiorIndex();
exteriorDofIdx_ = scvf.exteriorIndex();
assert(interiorDofIdx_ != exteriorDofIdx_);
assert(interiorDofIdx != exteriorDofIdx);
unsigned I = stencil.globalSpaceIndex(interiorDofIdx_);
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx_);
unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx_, exteriorDofIdx_);
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
Scalar faceArea = scvf.area();
Scalar thpres = problem.thresholdPressure(I, J);
@ -233,129 +235,171 @@ protected:
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx_, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx_, timeIdx);
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx_, timeIdx);
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
// the distances from the DOF's depths. (i.e., the additional depth of the
// exterior DOF)
Scalar distZ = zIn - zEx;
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
// check shortcut: if the mobility of the phase is zero in the interior as
// well as the exterior DOF, we can skip looking at the phase.
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
intQuantsEx.mobility(phaseIdx) <= 0.0)
{
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
pressureDifference_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
calculatePhasePressureDiff_(upIdx[phaseIdx],
dnIdx[phaseIdx],
pressureDifferences[phaseIdx],
intQuantsIn,
intQuantsEx,
timeIdx,//input
phaseIdx,//input
interiorDofIdx,//input
exteriorDofIdx,//intput
Vin,
Vex,
I,
J,
distZ*g,
thpres);
if (pressureDifferences[phaseIdx] == 0) {
volumeFlux[phaseIdx] = 0.0;
continue;
}
// do the gravity correction: compute the hydrostatic pressure for the
// external at the depth of the internal one
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
if (enableExtbo) // added stability; particulary useful for solvent migrating in pure water
// where the solvent fraction displays a 0/1 behaviour ...
pressureExterior += Toolbox::value(rhoAvg)*(distZ*g);
else
pressureExterior += rhoAvg*(distZ*g);
pressureDifference_[phaseIdx] = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference_[phaseIdx] > 0.0) {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else if (pressureDifference_[phaseIdx] < 0.0) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else {
// if the pressure difference is zero, we chose the DOF which has the
// larger volume associated to it as upstream DOF
Scalar Vin = elemCtx.dofVolume(interiorDofIdx_, /*timeIdx=*/0);
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx_, /*timeIdx=*/0);
if (Vin > Vex) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else if (Vin < Vex) {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
else {
assert(Vin == Vex);
// if the volumes are also equal, we pick the DOF which exhibits the
// smaller global index
if (I < J) {
upIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = exteriorDofIdx_;
}
else {
upIdx_[phaseIdx] = exteriorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx_;
}
}
}
// apply the threshold pressure for the intersection. note that the concept
// of threshold pressure is a quite big hack that only makes sense for ECL
// datasets. (and even there, its physical justification is quite
// questionable IMO.)
if (std::abs(Toolbox::value(pressureDifference_[phaseIdx])) > thpres) {
if (pressureDifference_[phaseIdx] < 0.0)
pressureDifference_[phaseIdx] += thpres;
else
pressureDifference_[phaseIdx] -= thpres;
}
else {
pressureDifference_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
// does not matter, though.
unsigned upstreamIdx = upstreamIndex_(phaseIdx);
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
const IntensiveQuantities& up = (upIdx[phaseIdx] == interiorDofIdx) ? intQuantsIn : intQuantsEx;
// TODO: should the rock compaction transmissibility multiplier be upstreamed
// or averaged? all fluids should see the same compaction?!
const Evaluation& transMult =
problem.template rockCompTransMultiplier<Evaluation>(up, stencil.globalSpaceIndex(upstreamIdx));
const Evaluation& transMult = up.rockCompTransMultiplier();
if (upstreamIdx == interiorDofIdx_)
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*transMult*(-trans/faceArea);
if (upIdx[phaseIdx] == interiorDofIdx)
volumeFlux[phaseIdx] =
pressureDifferences[phaseIdx]*up.mobility(phaseIdx)*transMult*(-trans/faceArea);
else
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea));
volumeFlux[phaseIdx] =
pressureDifferences[phaseIdx]*(Toolbox::value(up.mobility(phaseIdx))*Toolbox::value(transMult)*(-trans/faceArea));
}
}
template<class EvalType>
static void calculatePhasePressureDiff_(short& upIdx,
short& dnIdx,
EvalType& pressureDifference,
const IntensiveQuantities& intQuantsIn,
const IntensiveQuantities& intQuantsEx,
const unsigned timeIdx,
const unsigned phaseIdx,
const unsigned interiorDofIdx,
const unsigned exteriorDofIdx,
const Scalar Vin,
const Scalar Vex,
const unsigned globalIndexIn,
const unsigned globalIndexEx,
const Scalar distZg,
const Scalar thpres
)
{
// check shortcut: if the mobility of the phase is zero in the interior as
// well as the exterior DOF, we can skip looking at the phase.
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
intQuantsEx.mobility(phaseIdx) <= 0.0)
{
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
pressureDifference = 0.0;
return;
}
// do the gravity correction: compute the hydrostatic pressure for the
// external at the depth of the internal one
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
if (enableExtbo) // added stability; particulary useful for solvent migrating in pure water
// where the solvent fraction displays a 0/1 behaviour ...
pressureExterior += Toolbox::value(rhoAvg)*(distZg);
else
pressureExterior += rhoAvg*(distZg);
pressureDifference = pressureExterior - pressureInterior;
// decide the upstream index for the phase. for this we make sure that the
// degree of freedom which is regarded upstream if both pressures are equal
// is always the same: if the pressure is equal, the DOF with the lower
// global index is regarded to be the upstream one.
if (pressureDifference > 0.0) {
upIdx = exteriorDofIdx;
dnIdx = interiorDofIdx;
}
else if (pressureDifference < 0.0) {
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
}
else {
// if the pressure difference is zero, we chose the DOF which has the
// larger volume associated to it as upstream DOF
if (Vin > Vex) {
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
}
else if (Vin < Vex) {
upIdx = exteriorDofIdx;
dnIdx = interiorDofIdx;
}
else {
assert(Vin == Vex);
// if the volumes are also equal, we pick the DOF which exhibits the
// smaller global index
if (globalIndexIn < globalIndexEx) {
upIdx = interiorDofIdx;
dnIdx = exteriorDofIdx;
}
else {
upIdx = exteriorDofIdx;
dnIdx = interiorDofIdx;
}
}
}
// apply the threshold pressure for the intersection. note that the concept
// of threshold pressure is a quite big hack that only makes sense for ECL
// datasets. (and even there, its physical justification is quite
// questionable IMO.)
if (std::abs(Toolbox::value(pressureDifference)) > thpres) {
if (pressureDifference < 0.0)
pressureDifference += thpres;
else
pressureDifference -= thpres;
}
else {
pressureDifference = 0.0;
}
}
protected:
/*!
* \brief Update the required gradients for interior faces
*/
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
Valgrind::SetUndefined(*this);
volumeAndPhasePressureDifferences(upIdx_ , dnIdx_, volumeFlux_, pressureDifference_, elemCtx, scvfIdx, timeIdx);
}
/*!
* \brief Update the required gradients for boundary faces
*/
@ -374,7 +418,7 @@ protected:
const auto& stencil = elemCtx.stencil(timeIdx);
const auto& scvf = stencil.boundaryFace(scvfIdx);
interiorDofIdx_ = scvf.interiorIndex();
unsigned interiorDofIdx = scvf.interiorIndex();
Scalar trans = problem.transmissibilityBoundary(elemCtx, scvfIdx);
Scalar faceArea = scvf.area();
@ -384,14 +428,14 @@ protected:
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx_, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
// this is quite hacky because the dune grid interface does not provide a
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
// solution would be to take the Z coordinate of the element centroids, but since
// ECL seems to like to be inconsistent on that front, it needs to be done like
// here...
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx_, timeIdx);
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
Scalar zEx = scvf.integrationPos()[dimWorld - 1];
// the distances from the DOF's depths. (i.e., the additional depth of the
@ -420,17 +464,17 @@ protected:
// global index is regarded to be the upstream one.
if (pressureDifference_[phaseIdx] > 0.0) {
upIdx_[phaseIdx] = -1;
dnIdx_[phaseIdx] = interiorDofIdx_;
dnIdx_[phaseIdx] = interiorDofIdx;
}
else {
upIdx_[phaseIdx] = interiorDofIdx_;
upIdx_[phaseIdx] = interiorDofIdx;
dnIdx_[phaseIdx] = -1;
}
Evaluation transModified = trans;
short upstreamIdx = upstreamIndex_(phaseIdx);
if (upstreamIdx == interiorDofIdx_) {
if (upstreamIdx == interiorDofIdx) {
// this is slightly hacky because in the automatic differentiation case, it
// only works for the element centered finite volume method. for ebos this
@ -438,7 +482,8 @@ protected:
const auto& up = elemCtx.intensiveQuantities(upstreamIdx, timeIdx);
// deal with water induced rock compaction
transModified *= problem.template rockCompTransMultiplier<double>(up, stencil.globalSpaceIndex(upstreamIdx));
const double transMult = Toolbox::value(up.rockCompTransMultiplier());
transModified *= transMult;
volumeFlux_[phaseIdx] =
pressureDifference_[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
@ -451,7 +496,7 @@ protected:
// interior element. TODO: this could probably be done more efficiently
const auto& matParams =
elemCtx.problem().materialLawParams(elemCtx,
interiorDofIdx_,
interiorDofIdx,
/*timeIdx=*/0);
typename FluidState::Scalar kr[numPhases];
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
@ -491,8 +536,6 @@ private:
Evaluation pressureDifference_[numPhases];
// the local indices of the interior and exterior degrees of freedom
unsigned short interiorDofIdx_;
unsigned short exteriorDofIdx_;
short upIdx_[numPhases];
short dnIdx_[numPhases];
};