mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
move computeConnectionDensities to StandardWellConnections
this necessitates expanding the template parameter list
This commit is contained in:
@@ -22,24 +22,32 @@
|
|||||||
#include <config.h>
|
#include <config.h>
|
||||||
#include <opm/simulators/wells/StandardWellConnections.hpp>
|
#include <opm/simulators/wells/StandardWellConnections.hpp>
|
||||||
|
|
||||||
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
||||||
|
|
||||||
|
#include <opm/models/blackoil/blackoilindices.hh>
|
||||||
|
#include <opm/models/blackoil/blackoilonephaseindices.hh>
|
||||||
|
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
|
||||||
|
|
||||||
|
#include <opm/simulators/utils/DeferredLogger.hpp>
|
||||||
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
#include <opm/simulators/wells/ParallelWellInfo.hpp>
|
||||||
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
|
||||||
|
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
namespace Opm
|
namespace Opm
|
||||||
{
|
{
|
||||||
|
|
||||||
template<class Scalar>
|
template<class FluidSystem, class Indices, class Scalar>
|
||||||
StandardWellConnections<Scalar>::
|
StandardWellConnections<FluidSystem,Indices,Scalar>::
|
||||||
StandardWellConnections(const WellInterfaceGeneric& well)
|
StandardWellConnections(const WellInterfaceGeneric& well)
|
||||||
: perf_densities_(well_.numPerfs())
|
: perf_densities_(well.numPerfs())
|
||||||
, perf_pressure_diffs_(well_.numPerfs())
|
, perf_pressure_diffs_(well.numPerfs())
|
||||||
, well_(well)
|
, well_(well)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Scalar>
|
template<class FluidSystem, class Indices, class Scalar>
|
||||||
void
|
void StandardWellConnections<FluidSystem,Indices,Scalar>::
|
||||||
StandardWellConnections<Scalar>::
|
|
||||||
computeConnectionPressureDelta()
|
computeConnectionPressureDelta()
|
||||||
{
|
{
|
||||||
// Algorithm:
|
// Algorithm:
|
||||||
@@ -74,6 +82,225 @@ computeConnectionPressureDelta()
|
|||||||
well_.parallelWellInfo().partialSumPerfValues(beg, end);
|
well_.parallelWellInfo().partialSumPerfValues(beg, end);
|
||||||
}
|
}
|
||||||
|
|
||||||
template class StandardWellConnections<double>;
|
template<class FluidSystem, class Indices, class Scalar>
|
||||||
|
void StandardWellConnections<FluidSystem,Indices,Scalar>::
|
||||||
|
computeConnectionDensities(const std::vector<Scalar>& perfComponentRates,
|
||||||
|
const std::vector<Scalar>& b_perf,
|
||||||
|
const std::vector<Scalar>& rsmax_perf,
|
||||||
|
const std::vector<Scalar>& rvmax_perf,
|
||||||
|
const std::vector<Scalar>& rvwmax_perf,
|
||||||
|
const std::vector<Scalar>& surf_dens_perf,
|
||||||
|
DeferredLogger& deferred_logger)
|
||||||
|
{
|
||||||
|
// Verify that we have consistent input.
|
||||||
|
const int nperf = well_.numPerfs();
|
||||||
|
const int num_comp = well_.numComponents();
|
||||||
|
|
||||||
|
// 1. Compute the flow (in surface volume units for each
|
||||||
|
// component) exiting up the wellbore from each perforation,
|
||||||
|
// taking into account flow from lower in the well, and
|
||||||
|
// in/out-flow at each perforation.
|
||||||
|
std::vector<Scalar> q_out_perf((nperf)*num_comp, 0.0);
|
||||||
|
|
||||||
|
// Step 1 depends on the order of the perforations. Hence we need to
|
||||||
|
// do the modifications globally.
|
||||||
|
// Create and get the global perforation information and do this sequentially
|
||||||
|
// on each process
|
||||||
|
|
||||||
|
const auto& factory = well_.parallelWellInfo().getGlobalPerfContainerFactory();
|
||||||
|
auto global_q_out_perf = factory.createGlobal(q_out_perf, num_comp);
|
||||||
|
auto global_perf_comp_rates = factory.createGlobal(perfComponentRates, num_comp);
|
||||||
|
|
||||||
|
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
|
||||||
|
// Iterate over well perforations from bottom to top.
|
||||||
|
for (int perf = factory.numGlobalPerfs() - 1; perf >= 0; --perf) {
|
||||||
|
for (int component = 0; component < num_comp; ++component) {
|
||||||
|
auto index = perf * num_comp + component;
|
||||||
|
if (perf == factory.numGlobalPerfs() - 1) {
|
||||||
|
// This is the bottom perforation. No flow from below.
|
||||||
|
global_q_out_perf[index] = 0.0;
|
||||||
|
} else {
|
||||||
|
// Set equal to flow from below.
|
||||||
|
global_q_out_perf[index] = global_q_out_perf[index + num_comp];
|
||||||
|
}
|
||||||
|
// Subtract outflow through perforation.
|
||||||
|
global_q_out_perf[index] -= global_perf_comp_rates[index];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Copy the data back to local view
|
||||||
|
factory.copyGlobalToLocal(global_q_out_perf, q_out_perf, num_comp);
|
||||||
|
|
||||||
|
// 2. Compute the component mix at each perforation as the
|
||||||
|
// absolute values of the surface rates divided by their sum.
|
||||||
|
// Then compute volume ratios (formation factors) for each perforation.
|
||||||
|
// Finally compute densities for the segments associated with each perforation.
|
||||||
|
std::vector<Scalar> mix(num_comp,0.0);
|
||||||
|
std::vector<Scalar> x(num_comp);
|
||||||
|
std::vector<Scalar> surf_dens(num_comp);
|
||||||
|
|
||||||
|
for (int perf = 0; perf < nperf; ++perf) {
|
||||||
|
// Find component mix.
|
||||||
|
const Scalar tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
|
||||||
|
q_out_perf.begin() + num_comp*(perf+1), 0.0);
|
||||||
|
if (tot_surf_rate != 0.0) {
|
||||||
|
for (int component = 0; component < num_comp; ++component) {
|
||||||
|
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
|
||||||
|
}
|
||||||
|
} else if (num_comp == 1) {
|
||||||
|
mix[num_comp-1] = 1.0;
|
||||||
|
} else {
|
||||||
|
std::fill(mix.begin(), mix.end(), 0.0);
|
||||||
|
// No flow => use well specified fractions for mix.
|
||||||
|
if (well_.isInjector()) {
|
||||||
|
switch (well_.wellEcl().injectorType()) {
|
||||||
|
case InjectorType::WATER:
|
||||||
|
mix[FluidSystem::waterCompIdx] = 1.0;
|
||||||
|
break;
|
||||||
|
case InjectorType::GAS:
|
||||||
|
mix[FluidSystem::gasCompIdx] = 1.0;
|
||||||
|
break;
|
||||||
|
case InjectorType::OIL:
|
||||||
|
mix[FluidSystem::oilCompIdx] = 1.0;
|
||||||
|
break;
|
||||||
|
case InjectorType::MULTI:
|
||||||
|
// Not supported.
|
||||||
|
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
|
||||||
|
// "Multi phase injectors are not supported, requested for well " + name());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
assert(well_.isProducer());
|
||||||
|
// For the frist perforation without flow we use the preferred phase to decide the mix initialization.
|
||||||
|
if (perf == 0) { //
|
||||||
|
switch (well_.wellEcl().getPreferredPhase()) {
|
||||||
|
case Phase::OIL:
|
||||||
|
mix[FluidSystem::oilCompIdx] = 1.0;
|
||||||
|
break;
|
||||||
|
case Phase::GAS:
|
||||||
|
mix[FluidSystem::gasCompIdx] = 1.0;
|
||||||
|
break;
|
||||||
|
case Phase::WATER:
|
||||||
|
mix[FluidSystem::waterCompIdx] = 1.0;
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
// No others supported.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
// For the rest of the perforation without flow we use mix from the above perforation.
|
||||||
|
} else {
|
||||||
|
mix = x;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Compute volume ratio.
|
||||||
|
x = mix;
|
||||||
|
|
||||||
|
// Subtract dissolved gas from oil phase and vapporized oil from gas phase and vaporized water from gas phase
|
||||||
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||||
|
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
||||||
|
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
||||||
|
Scalar rs = 0.0;
|
||||||
|
Scalar rv = 0.0;
|
||||||
|
if (!rsmax_perf.empty() && mix[oilpos] > 1e-12) {
|
||||||
|
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
|
||||||
|
}
|
||||||
|
if (!rvmax_perf.empty() && mix[gaspos] > 1e-12) {
|
||||||
|
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
|
||||||
|
}
|
||||||
|
const Scalar d = 1.0 - rs*rv;
|
||||||
|
if (d <= 0.0) {
|
||||||
|
std::ostringstream sstr;
|
||||||
|
sstr << "Problematic d value " << d << " obtained for well " << well_.name()
|
||||||
|
<< " during ccomputeConnectionDensities with rs " << rs
|
||||||
|
<< ", rv " << rv
|
||||||
|
<< " obtaining d " << d
|
||||||
|
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
|
||||||
|
<< " for this connection.";
|
||||||
|
deferred_logger.debug(sstr.str());
|
||||||
|
} else {
|
||||||
|
if (rs > 0.0) {
|
||||||
|
// Subtract gas in oil from gas mixture
|
||||||
|
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/d;
|
||||||
|
}
|
||||||
|
if (rv > 0.0) {
|
||||||
|
// Subtract oil in gas from oil mixture
|
||||||
|
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/d;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||||
|
//matrix system: (mix[oilpos] = q_os, x[oilpos] = bo*q_or, etc...)
|
||||||
|
//┌ ┐ ┌ ┐ ┌ ┐
|
||||||
|
//│mix[oilpos] │ | 1 Rv 0 | |x[oilpos] |
|
||||||
|
//│mix[gaspos] │ = │ Rs 1 0 │ │x[gaspos] │
|
||||||
|
//│mix[waterpos]│ │ 0 Rvw 1 │ │x[waterpos │
|
||||||
|
//└ ┘ └ ┘ └ ┘
|
||||||
|
const unsigned waterpos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
||||||
|
Scalar rvw = 0.0;
|
||||||
|
if (!rvwmax_perf.empty() && mix[gaspos] > 1e-12) {
|
||||||
|
rvw = std::min(mix[waterpos]/mix[gaspos], rvwmax_perf[perf]);
|
||||||
|
}
|
||||||
|
if (rvw > 0.0) {
|
||||||
|
// Subtract water in gas from water mixture
|
||||||
|
x[waterpos] = mix[waterpos] - x[gaspos] * rvw;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
||||||
|
//no oil
|
||||||
|
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
||||||
|
const unsigned waterpos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
||||||
|
Scalar rvw = 0.0;
|
||||||
|
if (!rvwmax_perf.empty() && mix[gaspos] > 1e-12) {
|
||||||
|
rvw = std::min(mix[waterpos]/mix[gaspos], rvwmax_perf[perf]);
|
||||||
|
}
|
||||||
|
if (rvw > 0.0) {
|
||||||
|
// Subtract water in gas from water mixture
|
||||||
|
x[waterpos] = mix[waterpos] - mix[gaspos] * rvw;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Scalar volrat = 0.0;
|
||||||
|
for (int component = 0; component < num_comp; ++component) {
|
||||||
|
volrat += x[component] / b_perf[perf*num_comp+ component];
|
||||||
|
}
|
||||||
|
for (int component = 0; component < num_comp; ++component) {
|
||||||
|
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute segment density.
|
||||||
|
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define INSTANCE(...) \
|
||||||
|
template class StandardWellConnections<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
|
||||||
|
|
||||||
|
// One phase
|
||||||
|
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
|
||||||
|
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
|
||||||
|
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
|
||||||
|
|
||||||
|
// Two phase
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
|
||||||
|
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
|
||||||
|
|
||||||
|
// Blackoil
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
|
||||||
|
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -28,9 +28,10 @@
|
|||||||
namespace Opm
|
namespace Opm
|
||||||
{
|
{
|
||||||
|
|
||||||
|
class DeferredLogger;
|
||||||
class WellInterfaceGeneric;
|
class WellInterfaceGeneric;
|
||||||
|
|
||||||
template<class Scalar>
|
template<class FluidSystem, class Indices, class Scalar>
|
||||||
class StandardWellConnections
|
class StandardWellConnections
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
@@ -38,6 +39,16 @@ public:
|
|||||||
|
|
||||||
void computeConnectionPressureDelta();
|
void computeConnectionPressureDelta();
|
||||||
|
|
||||||
|
// TODO: not total sure whether it is a good idea to put this function here
|
||||||
|
// the major reason to put here is to avoid the usage of Wells struct
|
||||||
|
void computeConnectionDensities(const std::vector<Scalar>& perfComponentRates,
|
||||||
|
const std::vector<Scalar>& b_perf,
|
||||||
|
const std::vector<Scalar>& rsmax_perf,
|
||||||
|
const std::vector<Scalar>& rvmax_perf,
|
||||||
|
const std::vector<Scalar>& rvwmax_perf,
|
||||||
|
const std::vector<Scalar>& surf_dens_perf,
|
||||||
|
DeferredLogger& deferred_logger);
|
||||||
|
|
||||||
Scalar getRho() const
|
Scalar getRho() const
|
||||||
{
|
{
|
||||||
return this->perf_densities_.empty() ? 0.0 : perf_densities_[0];
|
return this->perf_densities_.empty() ? 0.0 : perf_densities_[0];
|
||||||
|
|||||||
@@ -155,199 +155,6 @@ getWellConvergence(const WellState& well_state,
|
|||||||
return report;
|
return report;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class FluidSystem, class Indices, class Scalar>
|
|
||||||
void
|
|
||||||
StandardWellEval<FluidSystem,Indices,Scalar>::
|
|
||||||
computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
|
||||||
const std::vector<double>& b_perf,
|
|
||||||
const std::vector<double>& rsmax_perf,
|
|
||||||
const std::vector<double>& rvmax_perf,
|
|
||||||
const std::vector<double>& rvwmax_perf,
|
|
||||||
const std::vector<double>& surf_dens_perf,
|
|
||||||
DeferredLogger& deferred_logger)
|
|
||||||
{
|
|
||||||
// Verify that we have consistent input.
|
|
||||||
const int nperf = baseif_.numPerfs();
|
|
||||||
const int num_comp = baseif_.numComponents();
|
|
||||||
|
|
||||||
// 1. Compute the flow (in surface volume units for each
|
|
||||||
// component) exiting up the wellbore from each perforation,
|
|
||||||
// taking into account flow from lower in the well, and
|
|
||||||
// in/out-flow at each perforation.
|
|
||||||
std::vector<double> q_out_perf((nperf)*num_comp, 0.0);
|
|
||||||
|
|
||||||
// Step 1 depends on the order of the perforations. Hence we need to
|
|
||||||
// do the modifications globally.
|
|
||||||
// Create and get the global perforation information and do this sequentially
|
|
||||||
// on each process
|
|
||||||
|
|
||||||
const auto& factory = baseif_.parallelWellInfo().getGlobalPerfContainerFactory();
|
|
||||||
auto global_q_out_perf = factory.createGlobal(q_out_perf, num_comp);
|
|
||||||
auto global_perf_comp_rates = factory.createGlobal(perfComponentRates, num_comp);
|
|
||||||
|
|
||||||
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
|
|
||||||
// Iterate over well perforations from bottom to top.
|
|
||||||
for (int perf = factory.numGlobalPerfs() - 1; perf >= 0; --perf) {
|
|
||||||
for (int component = 0; component < num_comp; ++component) {
|
|
||||||
auto index = perf * num_comp + component;
|
|
||||||
if (perf == factory.numGlobalPerfs() - 1) {
|
|
||||||
// This is the bottom perforation. No flow from below.
|
|
||||||
global_q_out_perf[index] = 0.0;
|
|
||||||
} else {
|
|
||||||
// Set equal to flow from below.
|
|
||||||
global_q_out_perf[index] = global_q_out_perf[index + num_comp];
|
|
||||||
}
|
|
||||||
// Subtract outflow through perforation.
|
|
||||||
global_q_out_perf[index] -= global_perf_comp_rates[index];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Copy the data back to local view
|
|
||||||
factory.copyGlobalToLocal(global_q_out_perf, q_out_perf, num_comp);
|
|
||||||
|
|
||||||
// 2. Compute the component mix at each perforation as the
|
|
||||||
// absolute values of the surface rates divided by their sum.
|
|
||||||
// Then compute volume ratios (formation factors) for each perforation.
|
|
||||||
// Finally compute densities for the segments associated with each perforation.
|
|
||||||
std::vector<double> mix(num_comp,0.0);
|
|
||||||
std::vector<double> x(num_comp);
|
|
||||||
std::vector<double> surf_dens(num_comp);
|
|
||||||
|
|
||||||
for (int perf = 0; perf < nperf; ++perf) {
|
|
||||||
// Find component mix.
|
|
||||||
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
|
|
||||||
q_out_perf.begin() + num_comp*(perf+1), 0.0);
|
|
||||||
if (tot_surf_rate != 0.0) {
|
|
||||||
for (int component = 0; component < num_comp; ++component) {
|
|
||||||
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
|
|
||||||
}
|
|
||||||
} else if (num_comp == 1) {
|
|
||||||
mix[num_comp-1] = 1.0;
|
|
||||||
} else {
|
|
||||||
std::fill(mix.begin(), mix.end(), 0.0);
|
|
||||||
// No flow => use well specified fractions for mix.
|
|
||||||
if (baseif_.isInjector()) {
|
|
||||||
switch (baseif_.wellEcl().injectorType()) {
|
|
||||||
case InjectorType::WATER:
|
|
||||||
mix[FluidSystem::waterCompIdx] = 1.0;
|
|
||||||
break;
|
|
||||||
case InjectorType::GAS:
|
|
||||||
mix[FluidSystem::gasCompIdx] = 1.0;
|
|
||||||
break;
|
|
||||||
case InjectorType::OIL:
|
|
||||||
mix[FluidSystem::oilCompIdx] = 1.0;
|
|
||||||
break;
|
|
||||||
case InjectorType::MULTI:
|
|
||||||
// Not supported.
|
|
||||||
// deferred_logger.warning("MULTI_PHASE_INJECTOR_NOT_SUPPORTED",
|
|
||||||
// "Multi phase injectors are not supported, requested for well " + name());
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
assert(baseif_.isProducer());
|
|
||||||
// For the frist perforation without flow we use the preferred phase to decide the mix initialization.
|
|
||||||
if (perf == 0) { //
|
|
||||||
switch (baseif_.wellEcl().getPreferredPhase()) {
|
|
||||||
case Phase::OIL:
|
|
||||||
mix[FluidSystem::oilCompIdx] = 1.0;
|
|
||||||
break;
|
|
||||||
case Phase::GAS:
|
|
||||||
mix[FluidSystem::gasCompIdx] = 1.0;
|
|
||||||
break;
|
|
||||||
case Phase::WATER:
|
|
||||||
mix[FluidSystem::waterCompIdx] = 1.0;
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
// No others supported.
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
// For the rest of the perforation without flow we use mix from the above perforation.
|
|
||||||
} else {
|
|
||||||
mix = x;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Compute volume ratio.
|
|
||||||
x = mix;
|
|
||||||
|
|
||||||
// Subtract dissolved gas from oil phase and vapporized oil from gas phase and vaporized water from gas phase
|
|
||||||
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
||||||
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
||||||
const unsigned oilpos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
||||||
double rs = 0.0;
|
|
||||||
double rv = 0.0;
|
|
||||||
if (!rsmax_perf.empty() && mix[oilpos] > 1e-12) {
|
|
||||||
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
|
|
||||||
}
|
|
||||||
if (!rvmax_perf.empty() && mix[gaspos] > 1e-12) {
|
|
||||||
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
|
|
||||||
}
|
|
||||||
const double d = 1.0 - rs*rv;
|
|
||||||
if (d <= 0.0) {
|
|
||||||
std::ostringstream sstr;
|
|
||||||
sstr << "Problematic d value " << d << " obtained for well " << baseif_.name()
|
|
||||||
<< " during ccomputeConnectionDensities with rs " << rs
|
|
||||||
<< ", rv " << rv
|
|
||||||
<< " obtaining d " << d
|
|
||||||
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
|
|
||||||
<< " for this connection.";
|
|
||||||
deferred_logger.debug(sstr.str());
|
|
||||||
} else {
|
|
||||||
if (rs > 0.0) {
|
|
||||||
// Subtract gas in oil from gas mixture
|
|
||||||
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/d;
|
|
||||||
}
|
|
||||||
if (rv > 0.0) {
|
|
||||||
// Subtract oil in gas from oil mixture
|
|
||||||
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/d;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
||||||
//matrix system: (mix[oilpos] = q_os, x[oilpos] = bo*q_or, etc...)
|
|
||||||
//┌ ┐ ┌ ┐ ┌ ┐
|
|
||||||
//│mix[oilpos] │ | 1 Rv 0 | |x[oilpos] |
|
|
||||||
//│mix[gaspos] │ = │ Rs 1 0 │ │x[gaspos] │
|
|
||||||
//│mix[waterpos]│ │ 0 Rvw 1 │ │x[waterpos │
|
|
||||||
//└ ┘ └ ┘ └ ┘
|
|
||||||
const unsigned waterpos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
||||||
double rvw = 0.0;
|
|
||||||
if (!rvwmax_perf.empty() && mix[gaspos] > 1e-12) {
|
|
||||||
rvw = std::min(mix[waterpos]/mix[gaspos], rvwmax_perf[perf]);
|
|
||||||
}
|
|
||||||
if (rvw > 0.0) {
|
|
||||||
// Subtract water in gas from water mixture
|
|
||||||
x[waterpos] = mix[waterpos] - x[gaspos] * rvw;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
||||||
//no oil
|
|
||||||
const unsigned gaspos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
||||||
const unsigned waterpos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
||||||
double rvw = 0.0;
|
|
||||||
if (!rvwmax_perf.empty() && mix[gaspos] > 1e-12) {
|
|
||||||
rvw = std::min(mix[waterpos]/mix[gaspos], rvwmax_perf[perf]);
|
|
||||||
}
|
|
||||||
if (rvw > 0.0) {
|
|
||||||
// Subtract water in gas from water mixture
|
|
||||||
x[waterpos] = mix[waterpos] - mix[gaspos] * rvw;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
double volrat = 0.0;
|
|
||||||
for (int component = 0; component < num_comp; ++component) {
|
|
||||||
volrat += x[component] / b_perf[perf*num_comp+ component];
|
|
||||||
}
|
|
||||||
for (int component = 0; component < num_comp; ++component) {
|
|
||||||
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute segment density.
|
|
||||||
this->connections_.perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<class FluidSystem, class Indices, class Scalar>
|
template<class FluidSystem, class Indices, class Scalar>
|
||||||
void
|
void
|
||||||
StandardWellEval<FluidSystem,Indices,Scalar>::
|
StandardWellEval<FluidSystem,Indices,Scalar>::
|
||||||
|
|||||||
@@ -78,16 +78,6 @@ protected:
|
|||||||
// computing the accumulation term for later use in well mass equations
|
// computing the accumulation term for later use in well mass equations
|
||||||
void computeAccumWell();
|
void computeAccumWell();
|
||||||
|
|
||||||
// TODO: not total sure whether it is a good idea to put this function here
|
|
||||||
// the major reason to put here is to avoid the usage of Wells struct
|
|
||||||
void computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
|
||||||
const std::vector<double>& b_perf,
|
|
||||||
const std::vector<double>& rsmax_perf,
|
|
||||||
const std::vector<double>& rvmax_perf,
|
|
||||||
const std::vector<double>& rvwmax_perf,
|
|
||||||
const std::vector<double>& surf_dens_perf,
|
|
||||||
DeferredLogger& deferred_logger);
|
|
||||||
|
|
||||||
ConvergenceReport getWellConvergence(const WellState& well_state,
|
ConvergenceReport getWellConvergence(const WellState& well_state,
|
||||||
const std::vector<double>& B_avg,
|
const std::vector<double>& B_avg,
|
||||||
const double maxResidualAllowed,
|
const double maxResidualAllowed,
|
||||||
@@ -111,7 +101,7 @@ protected:
|
|||||||
std::vector<double> F0_;
|
std::vector<double> F0_;
|
||||||
|
|
||||||
StandardWellEquations<Scalar,Indices::numEq> linSys_; //!< Linear equation system
|
StandardWellEquations<Scalar,Indices::numEq> linSys_; //!< Linear equation system
|
||||||
StandardWellConnections<Scalar> connections_; //!< Connection level values
|
StandardWellConnections<FluidSystem,Indices,Scalar> connections_; //!< Connection level values
|
||||||
};
|
};
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1625,8 +1625,7 @@ namespace Opm
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
this->computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, rvwmax_perf, surf_dens_perf, deferred_logger);
|
this->connections_.computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, rvwmax_perf, surf_dens_perf, deferred_logger);
|
||||||
|
|
||||||
this->connections_.computeConnectionPressureDelta();
|
this->connections_.computeConnectionPressureDelta();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user