handbook updated

This commit is contained in:
Bernd Flemisch 2009-06-03 15:54:42 +00:00 committed by Andreas Lauser
parent 04ec7c0032
commit 0dba3bd6b7
6 changed files with 10 additions and 5 deletions

View File

@ -1 +1 @@
Here comes the detailed documentation.

View File

@ -1 +1 @@
Here comes the detailed documentation.

View File

@ -1 +1 @@
You can pick the formulation by setting the \char`\"{}Formulation\char`\"{} property. The default is pW-Sn.
\doxyref{TwoPBoxModel}{p.}{classDune_1_1TwoPBoxModel} describes the box discretization of an isothermal twophase flow model. The underlying equations are obtained after inserting Darcy's law into the mass balance equation for each phase, yielding \begin{align*} \phi \frac{\partial (\varrho_{\text{mass,w}} S_\text{w})}{\partial t} -\Div \left( \lambda_\text{w} \varrho_{\text{mass,w}} K \left(\grad p_\text{w} - \varrho_{\text{mass,w}}\boldsymbol{g} \right)\right) - q_\text{w} &= 0, \\ \phi \frac{\partial (\varrho_{\text{mass,n}} S_\text{n})}{\partial t} - \Div \left( \lambda_\text{n} \varrho_{\text{mass,n}} K\left( \grad p_\text{n} - \varrho_{\text{mass,n}}\boldsymbol{g} \right)\right) - q_\text{n} &= 0. \end{align*} You can pick the formulation by setting the \char`\"{}Formulation\char`\"{} property. The default is $p_\text{w}$-$S_\text{n}$.

View File

@ -0,0 +1,5 @@
Implementation of a decoupled formulation of a two phase two component flow processin porous media.
This implementation is written for a liquid-gas system. For the physical description of gas and liquid derivations of the classes \doxyref{Gas\_\-GL}{p.}{classDune_1_1Gas__GL} and \doxyref{Liquid\_\-GL}{p.}{classDune_1_1Liquid__GL} have to be provided. The template parameters are the used grid class and the desired number type (usually double) The pressure equation is given as $ -\frac{\partial V}{\partial p}\frac{\partial p}{\partial t}+\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}\nabla\cdot\left(\sum_{\alpha}C_{\alpha}^{\kappa}\mathbf{v}_{\alpha}\right)=\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}q^{\kappa}$ See paper SPE 99619 for derivation. The transport equation is $ \frac{\partial C^\kappa}{\partial t} = - \nabla \cdot \sum{C_\alpha^\kappa f_\alpha {\bf v}} + q^\kappa $
The pressure equation is given as $ -\frac{\partial V}{\partial p}\frac{\partial p}{\partial t}+\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}\nabla\cdot\left(\sum_{\alpha}C_{\alpha}^{\kappa}\mathbf{v}_{\alpha}\right)=\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}q^{\kappa}$ See paper SPE 99619 for derivation. The transport equation is $ \frac{\partial C^\kappa}{\partial t} = - \nabla \cdot \sum{C_\alpha^\kappa f_\alpha {\bf v}} + q^\kappa $

View File

@ -1 +1 @@
Here comes the detailed documentation.

View File

@ -12,7 +12,7 @@ libraries\footnote{In fact, the performance penalty resulting from the
use of DUNE's grid interface is usually negligible~\cite{BURRI2006}.}.
\begin{figure}[hbt]
\centering
% \includegraphics[width=.5\linewidth, keepaspectratio]{EPS/dunedesign}
\includegraphics[width=.5\linewidth, keepaspectratio]{EPS/dunedesign}
\caption{
\label{fig:dune-design}
A high-level overview on DUNE's design as available on the project's