mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
handbook updated
This commit is contained in:
parent
04ec7c0032
commit
0dba3bd6b7
@ -1 +1 @@
|
||||
|
||||
Here comes the detailed documentation.
|
||||
|
@ -1 +1 @@
|
||||
|
||||
Here comes the detailed documentation.
|
||||
|
@ -1 +1 @@
|
||||
You can pick the formulation by setting the \char`\"{}Formulation\char`\"{} property. The default is pW-Sn.
|
||||
\doxyref{TwoPBoxModel}{p.}{classDune_1_1TwoPBoxModel} describes the box discretization of an isothermal twophase flow model. The underlying equations are obtained after inserting Darcy's law into the mass balance equation for each phase, yielding \begin{align*} \phi \frac{\partial (\varrho_{\text{mass,w}} S_\text{w})}{\partial t} -\Div \left( \lambda_\text{w} \varrho_{\text{mass,w}} K \left(\grad p_\text{w} - \varrho_{\text{mass,w}}\boldsymbol{g} \right)\right) - q_\text{w} &= 0, \\ \phi \frac{\partial (\varrho_{\text{mass,n}} S_\text{n})}{\partial t} - \Div \left( \lambda_\text{n} \varrho_{\text{mass,n}} K\left( \grad p_\text{n} - \varrho_{\text{mass,n}}\boldsymbol{g} \right)\right) - q_\text{n} &= 0. \end{align*} You can pick the formulation by setting the \char`\"{}Formulation\char`\"{} property. The default is $p_\text{w}$-$S_\text{n}$.
|
||||
|
5
doc/handbook/ModelDescriptions/decoupled2p2c.tex
Normal file
5
doc/handbook/ModelDescriptions/decoupled2p2c.tex
Normal file
@ -0,0 +1,5 @@
|
||||
Implementation of a decoupled formulation of a two phase two component flow processin porous media.
|
||||
|
||||
This implementation is written for a liquid-gas system. For the physical description of gas and liquid derivations of the classes \doxyref{Gas\_\-GL}{p.}{classDune_1_1Gas__GL} and \doxyref{Liquid\_\-GL}{p.}{classDune_1_1Liquid__GL} have to be provided. The template parameters are the used grid class and the desired number type (usually double) The pressure equation is given as $ -\frac{\partial V}{\partial p}\frac{\partial p}{\partial t}+\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}\nabla\cdot\left(\sum_{\alpha}C_{\alpha}^{\kappa}\mathbf{v}_{\alpha}\right)=\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}q^{\kappa}$ See paper SPE 99619 for derivation. The transport equation is $ \frac{\partial C^\kappa}{\partial t} = - \nabla \cdot \sum{C_\alpha^\kappa f_\alpha {\bf v}} + q^\kappa $
|
||||
|
||||
The pressure equation is given as $ -\frac{\partial V}{\partial p}\frac{\partial p}{\partial t}+\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}\nabla\cdot\left(\sum_{\alpha}C_{\alpha}^{\kappa}\mathbf{v}_{\alpha}\right)=\sum_{\kappa}\frac{\partial V}{\partial m^{\kappa}}q^{\kappa}$ See paper SPE 99619 for derivation. The transport equation is $ \frac{\partial C^\kappa}{\partial t} = - \nabla \cdot \sum{C_\alpha^\kappa f_\alpha {\bf v}} + q^\kappa $
|
@ -1 +1 @@
|
||||
|
||||
Here comes the detailed documentation.
|
||||
|
@ -12,7 +12,7 @@ libraries\footnote{In fact, the performance penalty resulting from the
|
||||
use of DUNE's grid interface is usually negligible~\cite{BURRI2006}.}.
|
||||
\begin{figure}[hbt]
|
||||
\centering
|
||||
% \includegraphics[width=.5\linewidth, keepaspectratio]{EPS/dunedesign}
|
||||
\includegraphics[width=.5\linewidth, keepaspectratio]{EPS/dunedesign}
|
||||
\caption{
|
||||
\label{fig:dune-design}
|
||||
A high-level overview on DUNE's design as available on the project's
|
||||
|
Loading…
Reference in New Issue
Block a user