Merge pull request #109 from atgeirr/dg-improvements

DG time-of-flight improvements
This commit is contained in:
Bård Skaflestad 2012-12-19 09:09:33 -08:00
commit 1059611c78
3 changed files with 118 additions and 9 deletions

View File

@ -124,10 +124,12 @@ main(int argc, char** argv)
bool use_dg = param.getDefault("use_dg", false);
int dg_degree = -1;
bool use_cvi = false;
bool use_limiter = false;
bool use_multidim_upwind = false;
if (use_dg) {
dg_degree = param.getDefault("dg_degree", 0);
use_cvi = param.getDefault("use_cvi", false);
use_limiter = param.getDefault("use_limiter", false);
} else {
use_multidim_upwind = param.getDefault("use_multidim_upwind", false);
}
@ -157,7 +159,7 @@ main(int argc, char** argv)
transport_timer.start();
std::vector<double> tof;
if (use_dg) {
Opm::TransportModelTracerTofDiscGal tofsolver(grid, use_cvi);
Opm::TransportModelTracerTofDiscGal tofsolver(grid, use_cvi, use_limiter);
tofsolver.solveTof(&flux[0], &porevol[0], &src[0], dg_degree, tof);
} else {
Opm::TransportModelTracerTof tofsolver(grid, use_multidim_upwind);

View File

@ -128,11 +128,20 @@ namespace Opm
/// \param[in] use_cvi If true, use corner point velocity interpolation.
/// Otherwise, use the basic constant interpolation.
TransportModelTracerTofDiscGal::TransportModelTracerTofDiscGal(const UnstructuredGrid& grid,
const bool use_cvi)
const bool use_cvi,
const bool use_limiter)
: grid_(grid),
use_cvi_(use_cvi),
use_limiter_(use_limiter),
coord_(grid.dimensions),
velocity_(grid.dimensions)
{
// A note about the use_cvi_ member variable:
// In principle, we should not need it, since the choice of velocity
// interpolation is made below, but we may need to use higher order
// quadrature to exploit CVI, so we store the choice.
// An alternative would be to add a virtual method isConstant() to
// the VelocityInterpolationInterface.
if (use_cvi) {
velocity_interpolation_.reset(new VelocityInterpolationECVI(grid));
} else {
@ -224,19 +233,23 @@ namespace Opm
flux = -darcyflux_[face];
upstream_cell = grid_.face_cells[2*face];
}
if (upstream_cell < 0) {
// This is an outer boundary. Assumed tof = 0 on inflow, so no contribution.
continue;
}
if (flux >= 0.0) {
// This is an outflow boundary.
continue;
}
if (upstream_cell < 0) {
// This is an outer boundary. Assumed tof = 0 on inflow, so no contribution.
continue;
}
// Do quadrature over the face to compute
// \int_{\partial K} u_h^{ext} (v(x) \cdot n) b_j ds
// (where u_h^{ext} is the upstream unknown (tof)).
// Quadrature degree set to 2*D, since u_h^{ext} varies
// with degree D, and b_j too. We assume that the normal
// velocity is constant (this assumption may have to go
// for higher order than DG1).
const double normal_velocity = flux / grid_.face_areas[face];
FaceQuadrature quad(grid_, face, degree_);
FaceQuadrature quad(grid_, face, 2*degree_);
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
quad.quadPtCoord(quad_pt, &coord_[0]);
DGBasis::eval(grid_, cell, degree_, &coord_[0], &basis_[0]);
@ -253,7 +266,8 @@ namespace Opm
// Compute cell jacobian contribution. We use Fortran ordering
// for jac_, i.e. rows cycling fastest.
{
CellQuadrature quad(grid_, cell, 2*degree_ - 1);
const int deg_needed = use_cvi_ ? 2*degree_ : 2*degree_ - 1;
CellQuadrature quad(grid_, cell, deg_needed);
for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) {
// b_i (v \cdot \grad b_j)
quad.quadPtCoord(quad_pt, &coord_[0]);
@ -351,8 +365,14 @@ namespace Opm
}
THROW("Lapack error: " << info << " encountered in cell " << cell);
}
// The solution ends up in rhs_, so we must copy it.
std::copy(rhs_.begin(), rhs_.end(), tof_coeff_ + num_basis*cell);
// Apply limiter.
if (degree_ > 0 && use_limiter_) {
useLimiter(cell);
}
}
@ -369,4 +389,84 @@ namespace Opm
void TransportModelTracerTofDiscGal::useLimiter(const int cell)
{
if (degree_ != 1) {
THROW("This limiter only makes sense for our DG1 implementation.");
}
// Limiter principles:
// 1. Let M be the minimum TOF value on the upstream faces,
// evaluated in the upstream cells. Then the value at all
// points in this cell shall be at least M.
// 2. The TOF shall not be below zero in any point.
const int dim = grid_.dimensions;
const int num_basis = DGBasis::numBasisFunc(dim, degree_);
double limiter = 1e100;
// For inflow faces, ensure that cell tof does not dip below
// the minimum value from upstream (for that face).
for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) {
const int face = grid_.cell_faces[hface];
double flux = 0.0;
int upstream_cell = -1;
if (cell == grid_.face_cells[2*face]) {
flux = darcyflux_[face];
upstream_cell = grid_.face_cells[2*face+1];
} else {
flux = -darcyflux_[face];
upstream_cell = grid_.face_cells[2*face];
}
// Evaluate the solution in all corners, and find the appropriate limiter.
bool upstream = (upstream_cell >= 0 && flux < 0.0);
double min_upstream = upstream ? 1e100 : 0.0;
double min_here = 1e100;
for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) {
const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode];
DGBasis::eval(grid_, cell, degree_, nc, &basis_[0]);
const double tof_here = std::inner_product(basis_.begin(), basis_.end(),
tof_coeff_ + num_basis*cell, 0.0);
min_here = std::min(min_here, tof_here);
if (upstream) {
DGBasis::eval(grid_, upstream_cell, degree_, nc, &basis_nb_[0]);
const double tof_upstream
= std::inner_product(basis_nb_.begin(), basis_nb_.end(),
tof_coeff_ + num_basis*upstream_cell, 0.0);
min_upstream = std::min(min_upstream, tof_upstream);
}
}
if (min_here < min_upstream) {
// Must limit slope.
const double tof_c = tof_coeff_[num_basis*cell];
if (tof_c < min_upstream) {
// Handle by setting a flat solution.
std::cout << "Trouble in cell " << cell << std::endl;
limiter = 0.0;
tof_coeff_[num_basis*cell] = min_upstream;
break;
}
const double face_limit = (tof_c - min_upstream)/(tof_c - min_here);
limiter = std::min(limiter, face_limit);
}
}
if (limiter < 0.0) {
THROW("Error in limiter.");
}
if (limiter < 1.0) {
std::cout << "Applying limiter in cell " << cell << ", limiter = " << limiter << std::endl;
for (int i = num_basis*cell + 1; i < num_basis*(cell+1); ++i) {
tof_coeff_[i] *= limiter;
}
} else {
std::cout << "Not applying limiter in cell " << cell << "!" << std::endl;
}
}
} // namespace Opm

View File

@ -51,7 +51,8 @@ namespace Opm
/// \param[in] use_cvi If true, use corner point velocity interpolation.
/// Otherwise, use the basic constant interpolation.
TransportModelTracerTofDiscGal(const UnstructuredGrid& grid,
const bool use_cvi);
const bool use_cvi,
const bool use_limiter = false);
/// Solve for time-of-flight.
@ -82,8 +83,11 @@ namespace Opm
TransportModelTracerTofDiscGal(const TransportModelTracerTofDiscGal&);
TransportModelTracerTofDiscGal& operator=(const TransportModelTracerTofDiscGal&);
// Data members
const UnstructuredGrid& grid_;
boost::shared_ptr<VelocityInterpolationInterface> velocity_interpolation_;
bool use_cvi_;
bool use_limiter_;
const double* darcyflux_; // one flux per grid face
const double* porevolume_; // one volume per cell
const double* source_; // one volumetric source term per cell
@ -99,6 +103,9 @@ namespace Opm
std::vector<double> basis_nb_;
std::vector<double> grad_basis_;
std::vector<double> velocity_;
// Private methods
void useLimiter(const int cell);
};
} // namespace Opm