mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 18:02:57 -06:00
Merge remote-tracking branch 'atgeirr/master'
This commit is contained in:
commit
1069cfae6d
478
BlackoilPropsAd.cpp
Normal file
478
BlackoilPropsAd.cpp
Normal file
@ -0,0 +1,478 @@
|
||||
/*
|
||||
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "BlackoilPropsAd.hpp"
|
||||
#include "AutoDiffHelpers.hpp"
|
||||
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
// Making these typedef to make the code more readable.
|
||||
typedef BlackoilPropsAd::ADB ADB;
|
||||
typedef BlackoilPropsAd::V V;
|
||||
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
|
||||
|
||||
/// Constructor wrapping an opm-core black oil interface.
|
||||
BlackoilPropsAd::BlackoilPropsAd(const BlackoilPropertiesInterface& props)
|
||||
: props_(props),
|
||||
pu_(props.phaseUsage())
|
||||
{
|
||||
}
|
||||
|
||||
////////////////////////////
|
||||
// Rock interface //
|
||||
////////////////////////////
|
||||
|
||||
/// \return D, the number of spatial dimensions.
|
||||
int BlackoilPropsAd::numDimensions() const
|
||||
{
|
||||
return props_.numDimensions();
|
||||
}
|
||||
|
||||
/// \return N, the number of cells.
|
||||
int BlackoilPropsAd::numCells() const
|
||||
{
|
||||
return props_.numCells();
|
||||
}
|
||||
|
||||
/// \return Array of N porosity values.
|
||||
const double* BlackoilPropsAd::porosity() const
|
||||
{
|
||||
return props_.porosity();
|
||||
}
|
||||
|
||||
/// \return Array of ND^2 permeability values.
|
||||
/// The D^2 permeability values for a cell are organized as a matrix,
|
||||
/// which is symmetric (so ordering does not matter).
|
||||
const double* BlackoilPropsAd::permeability() const
|
||||
{
|
||||
return props_.permeability();
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// Fluid interface //
|
||||
////////////////////////////
|
||||
|
||||
|
||||
// ------ Density ------
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
/// \return Array of 3 density values.
|
||||
const double* BlackoilPropsAd::surfaceDensity() const
|
||||
{
|
||||
return props_.surfaceDensity();
|
||||
}
|
||||
|
||||
|
||||
// ------ Viscosity ------
|
||||
|
||||
/// Water viscosity.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V BlackoilPropsAd::muWat(const V& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Water]) {
|
||||
THROW("Cannot call muWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block mu(n, np);
|
||||
props_.viscosity(n, pw.data(), z.data(), cells.data(), mu.data(), 0);
|
||||
return mu.col(pu_.phase_pos[Water]);
|
||||
}
|
||||
|
||||
/// Oil viscosity.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V BlackoilPropsAd::muOil(const V& po,
|
||||
const V& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
if (pu_.phase_used[Gas]) {
|
||||
// Faking a z with the right ratio:
|
||||
// rs = zg/zo
|
||||
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
||||
z.col(pu_.phase_pos[Gas]) = rs;
|
||||
}
|
||||
Block mu(n, np);
|
||||
props_.viscosity(n, po.data(), z.data(), cells.data(), mu.data(), 0);
|
||||
return mu.col(pu_.phase_pos[Oil]);
|
||||
}
|
||||
|
||||
/// Gas viscosity.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
V BlackoilPropsAd::muGas(const V& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Gas]) {
|
||||
THROW("Cannot call muGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pg.size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block mu(n, np);
|
||||
props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0);
|
||||
return mu.col(pu_.phase_pos[Gas]);
|
||||
}
|
||||
|
||||
/// Water viscosity.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB BlackoilPropsAd::muWat(const ADB& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Water]) {
|
||||
THROW("Cannot call muWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.value().size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block mu(n, np);
|
||||
Block dmu(n, np);
|
||||
props_.viscosity(n, pw.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
||||
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Water]));
|
||||
const int num_blocks = pw.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dmu_diag * pw.derivative()[block];
|
||||
}
|
||||
return ADB::function(mu.col(pu_.phase_pos[Water]), jacs);
|
||||
}
|
||||
|
||||
/// Oil viscosity.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB BlackoilPropsAd::muOil(const ADB& po,
|
||||
const ADB& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.value().size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
if (pu_.phase_used[Gas]) {
|
||||
// Faking a z with the right ratio:
|
||||
// rs = zg/zo
|
||||
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
||||
z.col(pu_.phase_pos[Gas]) = rs.value();
|
||||
}
|
||||
Block mu(n, np);
|
||||
Block dmu(n, np);
|
||||
props_.viscosity(n, po.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
||||
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Oil]));
|
||||
const int num_blocks = po.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
// For now, we deliberately ignore the derivative with respect to rs,
|
||||
// since the BlackoilPropertiesInterface class does not evaluate it.
|
||||
// We would add to the next line: + dmu_drs_diag * rs.derivative()[block]
|
||||
jacs[block] = dmu_diag * po.derivative()[block];
|
||||
}
|
||||
return ADB::function(mu.col(pu_.phase_pos[Oil]), jacs);
|
||||
}
|
||||
|
||||
/// Gas viscosity.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n viscosity values.
|
||||
ADB BlackoilPropsAd::muGas(const ADB& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Gas]) {
|
||||
THROW("Cannot call muGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pg.value().size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block mu(n, np);
|
||||
Block dmu(n, np);
|
||||
props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
||||
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas]));
|
||||
const int num_blocks = pg.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = dmu_diag * pg.derivative()[block];
|
||||
}
|
||||
return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs);
|
||||
}
|
||||
|
||||
|
||||
// ------ Formation volume factor (b) ------
|
||||
|
||||
// These methods all call the matrix() method, after which the variable
|
||||
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
|
||||
// a cell. For three-phase black oil:
|
||||
// A = [ bw 0 0
|
||||
// 0 bo 0
|
||||
// 0 b0*rs bw ]
|
||||
// Where b = B^{-1}.
|
||||
// Therefore, we extract the correct diagonal element, and are done.
|
||||
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
|
||||
// we also get the following derivative matrix:
|
||||
// A = [ dbw 0 0
|
||||
// 0 dbo 0
|
||||
// 0 db0*rs dbw ]
|
||||
// Again, we just extract a diagonal element.
|
||||
|
||||
/// Water formation volume factor.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V BlackoilPropsAd::bWat(const V& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Water]) {
|
||||
THROW("Cannot call bWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block matrix(n, np*np);
|
||||
props_.matrix(n, pw.data(), z.data(), cells.data(), matrix.data(), 0);
|
||||
const int wi = pu_.phase_pos[Water];
|
||||
return matrix.col(wi*np + wi);
|
||||
}
|
||||
|
||||
/// Oil formation volume factor.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V BlackoilPropsAd::bOil(const V& po,
|
||||
const V& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Oil]) {
|
||||
THROW("Cannot call bOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
if (pu_.phase_used[Gas]) {
|
||||
// Faking a z with the right ratio:
|
||||
// rs = zg/zo
|
||||
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
||||
z.col(pu_.phase_pos[Gas]) = rs;
|
||||
}
|
||||
Block matrix(n, np*np);
|
||||
props_.matrix(n, po.data(), z.data(), cells.data(), matrix.data(), 0);
|
||||
const int oi = pu_.phase_pos[Oil];
|
||||
return matrix.col(oi*np + oi);
|
||||
}
|
||||
|
||||
/// Gas formation volume factor.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
V BlackoilPropsAd::bGas(const V& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Gas]) {
|
||||
THROW("Cannot call bGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pg.size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block matrix(n, np*np);
|
||||
props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0);
|
||||
const int gi = pu_.phase_pos[Gas];
|
||||
return matrix.col(gi*np + gi);
|
||||
}
|
||||
|
||||
/// Water formation volume factor.
|
||||
/// \param[in] pw Array of n water pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB BlackoilPropsAd::bWat(const ADB& pw,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Water]) {
|
||||
THROW("Cannot call muWat(): water phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pw.value().size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block matrix(n, np*np);
|
||||
Block dmatrix(n, np*np);
|
||||
props_.matrix(n, pw.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
||||
const int phase_ind = pu_.phase_pos[Water];
|
||||
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
||||
ADB::M db_diag = spdiag(dmatrix.col(column));
|
||||
const int num_blocks = pw.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = db_diag * pw.derivative()[block];
|
||||
}
|
||||
return ADB::function(matrix.col(column), jacs);
|
||||
}
|
||||
|
||||
/// Oil formation volume factor.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] rs Array of n gas solution factor values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB BlackoilPropsAd::bOil(const ADB& po,
|
||||
const ADB& rs,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Oil]) {
|
||||
THROW("Cannot call muOil(): oil phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(po.value().size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
if (pu_.phase_used[Gas]) {
|
||||
// Faking a z with the right ratio:
|
||||
// rs = zg/zo
|
||||
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
||||
z.col(pu_.phase_pos[Gas]) = rs.value();
|
||||
}
|
||||
Block matrix(n, np*np);
|
||||
Block dmatrix(n, np*np);
|
||||
props_.matrix(n, po.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
||||
const int phase_ind = pu_.phase_pos[Oil];
|
||||
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
||||
ADB::M db_diag = spdiag(dmatrix.col(column));
|
||||
const int num_blocks = po.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
// For now, we deliberately ignore the derivative with respect to rs,
|
||||
// since the BlackoilPropertiesInterface class does not evaluate it.
|
||||
// We would add to the next line: + db_drs_diag * rs.derivative()[block]
|
||||
jacs[block] = db_diag * po.derivative()[block];
|
||||
}
|
||||
return ADB::function(matrix.col(column), jacs);
|
||||
}
|
||||
|
||||
/// Gas formation volume factor.
|
||||
/// \param[in] pg Array of n gas pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n formation volume factor values.
|
||||
ADB BlackoilPropsAd::bGas(const ADB& pg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
if (!pu_.phase_used[Gas]) {
|
||||
THROW("Cannot call muGas(): gas phase not present.");
|
||||
}
|
||||
const int n = cells.size();
|
||||
ASSERT(pg.value().size() == n);
|
||||
const int np = props_.numPhases();
|
||||
Block z = Block::Zero(n, np);
|
||||
Block matrix(n, np*np);
|
||||
Block dmatrix(n, np*np);
|
||||
props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
||||
const int phase_ind = pu_.phase_pos[Gas];
|
||||
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
||||
ADB::M db_diag = spdiag(dmatrix.col(column));
|
||||
const int num_blocks = pg.numBlocks();
|
||||
std::vector<ADB::M> jacs(num_blocks);
|
||||
for (int block = 0; block < num_blocks; ++block) {
|
||||
jacs[block] = db_diag * pg.derivative()[block];
|
||||
}
|
||||
return ADB::function(matrix.col(column), jacs);
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
// ------ Rs bubble point curve ------
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
V BlackoilPropsAd::rsMax(const V& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
}
|
||||
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
ADB BlackoilPropsAd::rsMax(const ADB& po,
|
||||
const Cells& cells) const
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<V> BlackoilPropsAd::relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
}
|
||||
|
||||
/// Relative permeabilities for all phases.
|
||||
/// \param[in] sw Array of n water saturation values.
|
||||
/// \param[in] so Array of n oil saturation values.
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<ADB> BlackoilPropsAd::relperm(const ADB& sw,
|
||||
const ADB& so,
|
||||
const ADB& sg,
|
||||
const Cells& cells) const
|
||||
{
|
||||
}
|
||||
|
||||
} // namespace Opm
|
||||
|
@ -21,10 +21,13 @@
|
||||
#define OPM_BLACKOILPROPSAD_HEADER_INCLUDED
|
||||
|
||||
#include "AutoDiffBlock.hpp"
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
|
||||
class BlackoilPropertiesInterface;
|
||||
|
||||
/// This class is intended to present a fluid interface for
|
||||
/// three-phase black-oil that is easy to use with the AD-using
|
||||
/// simulators.
|
||||
@ -37,6 +40,9 @@ namespace Opm
|
||||
class BlackoilPropsAd
|
||||
{
|
||||
public:
|
||||
/// Constructor wrapping an opm-core black oil interface.
|
||||
explicit BlackoilPropsAd(const BlackoilPropertiesInterface& props);
|
||||
|
||||
////////////////////////////
|
||||
// Rock interface //
|
||||
////////////////////////////
|
||||
@ -65,6 +71,12 @@ namespace Opm
|
||||
typedef std::vector<int> Cells;
|
||||
|
||||
|
||||
// ------ Canonical named indices for each phase ------
|
||||
|
||||
/// Canonical named indices for each phase.
|
||||
enum PhaseIndex { Water = 0, Oil = 1, Gas = 2 };
|
||||
|
||||
|
||||
// ------ Density ------
|
||||
|
||||
/// Densities of stock components at surface conditions.
|
||||
@ -171,7 +183,7 @@ namespace Opm
|
||||
|
||||
|
||||
// ------ Rs bubble point curve ------
|
||||
|
||||
#if 0
|
||||
/// Bubble point curve for Rs as function of oil pressure.
|
||||
/// \param[in] po Array of n oil pressure values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
||||
@ -185,7 +197,7 @@ namespace Opm
|
||||
/// \return Array of n bubble point values for Rs.
|
||||
ADB rsMax(const ADB& po,
|
||||
const Cells& cells) const;
|
||||
|
||||
#endif
|
||||
|
||||
// ------ Relative permeability ------
|
||||
|
||||
@ -195,7 +207,7 @@ namespace Opm
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg.
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<V> relperm(const V& sw,
|
||||
const V& so,
|
||||
const V& sg,
|
||||
@ -207,12 +219,15 @@ namespace Opm
|
||||
/// \param[in] sg Array of n gas saturation values.
|
||||
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
||||
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
||||
/// containing krw, kro, krg.
|
||||
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
||||
std::vector<ADB> relperm(const ADB& sw,
|
||||
const ADB& so,
|
||||
const ADB& sg,
|
||||
const Cells& cells) const;
|
||||
|
||||
private:
|
||||
const BlackoilPropertiesInterface& props_;
|
||||
PhaseUsage pu_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
Loading…
Reference in New Issue
Block a user