Merge pull request #1072 from atgeirr/fix-wellstate

Towards fixing restart for flow_ebos
This commit is contained in:
Atgeirr Flø Rasmussen 2017-02-24 09:11:25 +01:00 committed by GitHub
commit 10f6c64502
5 changed files with 367 additions and 263 deletions

View File

@ -26,6 +26,7 @@
# originally generated with the command:
# find opm -name '*.c*' -printf '\t%p\n' | sort
list (APPEND MAIN_SOURCE_FILES
opm/autodiff/Compat.cpp
opm/autodiff/ExtractParallelGridInformationToISTL.cpp
opm/autodiff/NewtonIterationBlackoilCPR.cpp
opm/autodiff/NewtonIterationBlackoilInterleaved.cpp

257
opm/autodiff/Compat.cpp Normal file
View File

@ -0,0 +1,257 @@
/*
Copyright 2016 Statoil ASA
Copyright 2016 IRIS
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/Compat.hpp>
#include <algorithm>
#include <cassert>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
#include <opm/autodiff/BlackoilSolventState.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/output/data/Wells.hpp>
namespace Opm {
std::vector< double > destripe( const std::vector< double >& v,
size_t stride,
size_t offset ) {
std::vector< double > dst( v.size() / stride );
size_t di = 0;
for( size_t i = offset; i < v.size(); i += stride ) {
dst[ di++ ] = v[ i ];
}
return dst;
}
std::vector< double >& stripe( const std::vector< double >& v,
size_t stride,
size_t offset,
std::vector< double >& dst ) {
/* does little range checking etc; for future revisions */
size_t vi = 0;
for( size_t i = offset; i < dst.size(); i += stride ) {
dst[ i ] = v[ vi++ ];
}
return dst;
}
data::Solution simToSolution( const SimulationDataContainer& reservoir,
PhaseUsage phases ) {
data::Solution sol;
sol.insert( "PRESSURE", UnitSystem::measure::pressure, reservoir.pressure() , data::TargetType::RESTART_SOLUTION);
sol.insert( "TEMP" , UnitSystem::measure::temperature, reservoir.temperature() , data::TargetType::RESTART_SOLUTION );
const auto ph = reservoir.numPhases();
const auto& sat = reservoir.saturation();
const auto aqua = BlackoilPhases::Aqua;
const auto vapour = BlackoilPhases::Vapour;
if( phases.phase_used[ aqua ] ) {
sol.insert( "SWAT", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ aqua ] ) , data::TargetType::RESTART_SOLUTION );
}
if( phases.phase_used[ vapour ] ) {
sol.insert( "SGAS", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ vapour ] ) , data::TargetType::RESTART_SOLUTION );
}
if( reservoir.hasCellData( BlackoilState::GASOILRATIO ) ) {
sol.insert( "RS", UnitSystem::measure::gas_oil_ratio, reservoir.getCellData( BlackoilState::GASOILRATIO ) , data::TargetType::RESTART_SOLUTION );
}
if( reservoir.hasCellData( BlackoilState::RV ) ) {
sol.insert( "RV", UnitSystem::measure::oil_gas_ratio, reservoir.getCellData( BlackoilState::RV ) , data::TargetType::RESTART_SOLUTION );
}
if (reservoir.hasCellData( BlackoilSolventState::SSOL)) {
sol.insert( "SSOL", UnitSystem::measure::identity, reservoir.getCellData( BlackoilSolventState::SSOL ) , data::TargetType::RESTART_SOLUTION );
}
return sol;
}
void solutionToSim( const data::Solution& sol,
PhaseUsage phases,
SimulationDataContainer& state ) {
const auto stride = phases.num_phases;
if( sol.has( "SWAT" ) ) {
stripe( sol.data( "SWAT" ),
stride,
phases.phase_pos[ BlackoilPhases::Aqua ],
state.saturation() );
}
if( sol.has( "SGAS" ) ) {
stripe( sol.data( "SGAS" ),
stride,
phases.phase_pos[ BlackoilPhases::Vapour ],
state.saturation() );
}
for (size_t c = 0; c < state.numCells(); ++c) {
double& so = state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Liquid ]];
so = 1.0;
if (phases.phase_used[ BlackoilPhases::Aqua]) {
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Aqua ]];
}
if (phases.phase_used[ BlackoilPhases::Vapour]) {
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Vapour ]];
}
}
if( sol.has( "PRESSURE" ) ) {
state.pressure() = sol.data( "PRESSURE" );
}
if( sol.has( "TEMP" ) ) {
state.temperature() = sol.data( "TEMP" );
}
if( sol.has( "RS" ) ) {
state.getCellData( "GASOILRATIO" ) = sol.data( "RS" );
}
if( sol.has( "RV" ) ) {
state.getCellData( "RV" ) = sol.data( "RV" );
}
if (sol.has( "SSOL" ) ) {
state.getCellData("SSOL") = sol.data("SSOL");
}
}
void wellsToState( const data::Wells& wells,
PhaseUsage phases,
WellStateFullyImplicitBlackoil& state ) {
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector< rt > phs( np );
if( phases.phase_used[BlackoilPhases::Aqua] ) {
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( phases.phase_used[BlackoilPhases::Liquid] ) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( phases.phase_used[BlackoilPhases::Vapour] ) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for( const auto& wm : state.wellMap() ) {
const auto well_index = wm.second[ 0 ];
const auto& well = wells.at( wm.first );
state.bhp()[ well_index ] = well.bhp;
state.temperature()[ well_index ] = well.temperature;
state.currentControls()[ well_index ] = well.control;
const auto wellrate_index = well_index * np;
for( size_t i = 0; i < phs.size(); ++i ) {
assert( well.rates.has( phs[ i ] ) );
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
}
const auto perforation_pressure = []( const data::Completion& comp ) {
return comp.pressure;
};
const auto perforation_reservoir_rate = []( const data::Completion& comp ) {
return comp.reservoir_rate;
};
std::transform( well.completions.begin(),
well.completions.end(),
state.perfPress().begin() + wm.second[ 1 ],
perforation_pressure );
std::transform( well.completions.begin(),
well.completions.end(),
state.perfRates().begin() + wm.second[ 1 ],
perforation_reservoir_rate );
int local_comp_index = 0;
for (const data::Completion& comp : well.completions) {
const int global_comp_index = wm.second[1] + local_comp_index;
for (int phase_index = 0; phase_index < np; ++phase_index) {
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
}
++local_comp_index;
}
}
}
void wellsToState( const data::Wells& wells,
PhaseUsage phases,
WellStateFullyImplicitBlackoilDense& state )
{
// Set base class variables.
wellsToState(wells, phases, static_cast<WellStateFullyImplicitBlackoil&>(state));
// Set wellSolution() variable.
state.setWellSolutions(phases);
}
} // namespace Opm

View File

@ -21,229 +21,56 @@
#ifndef OPM_SIMULATORS_COMPAT_HPP
#define OPM_SIMULATORS_COMPAT_HPP
#include <algorithm>
#include <cassert>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilSolventState.hpp>
#include <opm/output/data/Cells.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <vector>
namespace Opm {
inline std::vector< double > destripe( const std::vector< double >& v,
// Forward declarations
class SimulationDataContainer;
class WellStateFullyImplicitBlackoil;
class WellStateFullyImplicitBlackoilDense;
/// Extract single data vector from striped data.
/// \return u such that u[i] = v[offset + i*stride].
std::vector< double > destripe( const std::vector< double >& v,
size_t stride,
size_t offset ) {
size_t offset );
std::vector< double > dst( v.size() / stride );
size_t di = 0;
for( size_t i = offset; i < v.size(); i += stride ) {
dst[ di++ ] = v[ i ];
}
return dst;
}
inline std::vector< double >& stripe( const std::vector< double >& v,
/// Inject single data vector into striped data.
/// \return reference to dst input, that is changed so that
/// dst[offset + i*stride] = v[i]. This is done for
/// i = 0..(dst.size()/stride).
std::vector< double >& stripe( const std::vector< double >& v,
size_t stride,
size_t offset,
std::vector< double >& dst ) {
std::vector< double >& dst );
/* does little range checking etc; for future revisions */
size_t vi = 0;
for( size_t i = offset; i < dst.size(); i += stride ) {
dst[ i ] = v[ vi++ ];
}
/// Returns Solution with the following fields:
/// PRESSURE, TEMP (unconditionally)
/// SWAT, SGAS, RS, RV, SSOL (if appropriate fields present in input)
data::Solution simToSolution( const SimulationDataContainer& reservoir,
PhaseUsage phases );
return dst;
}
inline data::Solution simToSolution( const SimulationDataContainer& reservoir,
PhaseUsage phases ) {
data::Solution sol;
sol.insert( "PRESSURE", UnitSystem::measure::pressure, reservoir.pressure() , data::TargetType::RESTART_SOLUTION);
sol.insert( "TEMP" , UnitSystem::measure::temperature, reservoir.temperature() , data::TargetType::RESTART_SOLUTION );
const auto ph = reservoir.numPhases();
const auto& sat = reservoir.saturation();
const auto aqua = BlackoilPhases::Aqua;
const auto vapour = BlackoilPhases::Vapour;
if( phases.phase_used[ aqua ] ) {
sol.insert( "SWAT", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ aqua ] ) , data::TargetType::RESTART_SOLUTION );
}
if( phases.phase_used[ vapour ] ) {
sol.insert( "SGAS", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ vapour ] ) , data::TargetType::RESTART_SOLUTION );
}
if( reservoir.hasCellData( BlackoilState::GASOILRATIO ) ) {
sol.insert( "RS", UnitSystem::measure::gas_oil_ratio, reservoir.getCellData( BlackoilState::GASOILRATIO ) , data::TargetType::RESTART_SOLUTION );
}
if( reservoir.hasCellData( BlackoilState::RV ) ) {
sol.insert( "RV", UnitSystem::measure::oil_gas_ratio, reservoir.getCellData( BlackoilState::RV ) , data::TargetType::RESTART_SOLUTION );
}
if (reservoir.hasCellData( BlackoilSolventState::SSOL)) {
sol.insert( "SSOL", UnitSystem::measure::identity, reservoir.getCellData( BlackoilSolventState::SSOL ) , data::TargetType::RESTART_SOLUTION );
}
return sol;
}
inline void solutionToSim( const data::Solution& sol,
/// Copies the following fields from sol into state (all conditionally):
/// PRESSURE, TEMP, SWAT, SGAS, RS, RV, SSOL
void solutionToSim( const data::Solution& sol,
PhaseUsage phases,
SimulationDataContainer& state ) {
SimulationDataContainer& state );
const auto stride = phases.num_phases;
if( sol.has( "SWAT" ) ) {
stripe( sol.data( "SWAT" ),
stride,
phases.phase_pos[ BlackoilPhases::Aqua ],
state.saturation() );
}
if( sol.has( "SGAS" ) ) {
stripe( sol.data( "SGAS" ),
stride,
phases.phase_pos[ BlackoilPhases::Vapour ],
state.saturation() );
}
for (size_t c = 0; c < state.numCells(); ++c) {
double& so = state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Liquid ]];
so = 1.0;
if (phases.phase_used[ BlackoilPhases::Aqua]) {
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Aqua ]];
}
if (phases.phase_used[ BlackoilPhases::Vapour]) {
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Vapour ]];
}
}
if( sol.has( "PRESSURE" ) ) {
state.pressure() = sol.data( "PRESSURE" );
}
if( sol.has( "TEMP" ) ) {
state.temperature() = sol.data( "TEMP" );
}
if( sol.has( "RS" ) ) {
state.getCellData( "GASOILRATIO" ) = sol.data( "RS" );
}
if( sol.has( "RV" ) ) {
state.getCellData( "RV" ) = sol.data( "RV" );
}
if (sol.has( "SSOL" ) ) {
state.getCellData("SSOL") = sol.data("SSOL");
}
}
inline void wellsToState( const data::Wells& wells,
/// Copies the following fields from wells into state.
/// bhp, temperature, currentControls, wellRates, perfPress, perfRates, perfPhaseRates
void wellsToState( const data::Wells& wells,
PhaseUsage phases,
WellStateFullyImplicitBlackoil& state ) {
WellStateFullyImplicitBlackoil& state );
using rt = data::Rates::opt;
const auto np = phases.num_phases;
std::vector< rt > phs( np );
if( phases.phase_used[BlackoilPhases::Aqua] ) {
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( phases.phase_used[BlackoilPhases::Liquid] ) {
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( phases.phase_used[BlackoilPhases::Vapour] ) {
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
for( const auto& wm : state.wellMap() ) {
const auto well_index = wm.second[ 0 ];
const auto& well = wells.at( wm.first );
state.bhp()[ well_index ] = well.bhp;
state.temperature()[ well_index ] = well.temperature;
state.currentControls()[ well_index ] = well.control;
const auto wellrate_index = well_index * np;
for( size_t i = 0; i < phs.size(); ++i ) {
assert( well.rates.has( phs[ i ] ) );
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
}
const auto perforation_pressure = []( const data::Completion& comp ) {
return comp.pressure;
};
const auto perforation_reservoir_rate = []( const data::Completion& comp ) {
return comp.reservoir_rate;
};
std::transform( well.completions.begin(),
well.completions.end(),
state.perfPress().begin() + wm.second[ 1 ],
perforation_pressure );
std::transform( well.completions.begin(),
well.completions.end(),
state.perfRates().begin() + wm.second[ 1 ],
perforation_reservoir_rate );
int local_comp_index = 0;
for (const data::Completion& comp : well.completions) {
const int global_comp_index = wm.second[1] + local_comp_index;
for (int phase_index = 0; phase_index < np; ++phase_index) {
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
}
++local_comp_index;
}
}
}
/// As the WellStateFullyImplicitBlackoil overload, but also sets
/// the wellSolution field from the values of the other fields.
void wellsToState( const data::Wells& wells,
PhaseUsage phases,
WellStateFullyImplicitBlackoilDense& state );
}

View File

@ -395,13 +395,13 @@ namespace Opm
}
template <class Grid, class WellStateFullyImplicitBlackOel>
template <class Grid, class WellState>
inline void
BlackoilOutputWriter::
initFromRestartFile( const PhaseUsage& phaseUsage,
const Grid& grid,
SimulationDataContainer& simulatorstate,
WellStateFullyImplicitBlackOel& wellstate)
WellState& wellstate)
{
std::map<std::string, UnitSystem::measure> solution_keys {{"PRESSURE" , UnitSystem::measure::pressure},
{"SWAT" , UnitSystem::measure::identity},

View File

@ -35,6 +35,7 @@
#include <map>
#include <algorithm>
#include <array>
#include <cmath>
namespace Opm
{
@ -67,52 +68,94 @@ namespace Opm
// call init on base class
BaseType :: init(wells, state, prevState);
// if there are no well, do nothing in init
if (wells == 0) {
return;
setWellSolutions(pu);
setWellSolutionsFromPrevState(prevState);
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
const int np = wells->number_of_phases;
template <class PrevState>
void setWellSolutionsFromPrevState(const PrevState& prevState)
{
// Set nw and np, or return if no wells.
if (wells_.get() == nullptr) {
return;
}
const int nw = wells_->number_of_wells;
if (nw == 0) {
return;
}
const int np = wells_->number_of_phases;
// intialize wells that have been there before
// order may change so the mapping is based on the well name
// if there are no well, do nothing in init
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
int nw_old = prevState.bhp().size();
for (int w = 0; w < nw; ++w) {
std::string name( wells_->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// wellSolutions
for( int i = 0; i < np; ++i)
{
wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
}
}
}
}
}
/// Set wellSolutions() based on the base class members.
void setWellSolutions(const PhaseUsage& pu)
{
// Set nw and np, or return if no wells.
if (wells_.get() == nullptr) {
return;
}
const int nw = wells_->number_of_wells;
if (nw == 0) {
return;
}
const int np = wells_->number_of_phases;
well_solutions_.clear();
well_solutions_.resize(nw * np, 0.0);
std::vector<double> g = {1.0,1.0,0.01};
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells->ctrls[w];
WellControls* wc = wells_->ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = currentControls()[w];
well_controls_set_current( wc, current);
const WellType& well_type = wells->type[w];
const WellType& well_type = wells_->type[w];
switch (well_controls_iget_type(wc, current)) {
case THP: // Intentional fall-through
case BHP:
{
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += wellRates()[np*w + p] * wells->comp_frac[np*w + p];
well_solutions_[w] += wellRates()[np*w + p] * wells_->comp_frac[np*w + p];
}
} else {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += g[p] * wellRates()[np*w + p];
}
}
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
wellSolutions()[w] = bhp()[w];
}
break;
}
@ -135,41 +178,16 @@ namespace Opm
}
} else {
if( pu.phase_used[Water] ) {
wellSolutions()[nw + w] = wells->comp_frac[np*w + waterpos];
wellSolutions()[nw + w] = wells_->comp_frac[np*w + waterpos];
}
if( pu.phase_used[Gas] ) {
wellSolutions()[2*nw + w] = wells->comp_frac[np*w + gaspos];
wellSolutions()[2*nw + w] = wells_->comp_frac[np*w + gaspos];
}
}
}
}
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
int nw_old = prevState.bhp().size();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// wellSolutions
for( int i = 0; i < np; ++i)
{
wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
}
}
}
}
}
template <class State>
void resize(const Wells* wells, const State& state, const PhaseUsage& pu ) {
const WellStateFullyImplicitBlackoilDense dummy_state{}; // Init with an empty previous state only resizes
@ -186,6 +204,7 @@ namespace Opm
return res;
}
private:
std::vector<double> well_solutions_;
};