mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #1072 from atgeirr/fix-wellstate
Towards fixing restart for flow_ebos
This commit is contained in:
commit
10f6c64502
@ -26,6 +26,7 @@
|
||||
# originally generated with the command:
|
||||
# find opm -name '*.c*' -printf '\t%p\n' | sort
|
||||
list (APPEND MAIN_SOURCE_FILES
|
||||
opm/autodiff/Compat.cpp
|
||||
opm/autodiff/ExtractParallelGridInformationToISTL.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilCPR.cpp
|
||||
opm/autodiff/NewtonIterationBlackoilInterleaved.cpp
|
||||
|
257
opm/autodiff/Compat.cpp
Normal file
257
opm/autodiff/Compat.cpp
Normal file
@ -0,0 +1,257 @@
|
||||
/*
|
||||
Copyright 2016 Statoil ASA
|
||||
Copyright 2016 IRIS
|
||||
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <opm/autodiff/Compat.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
|
||||
#include <opm/common/data/SimulationDataContainer.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
|
||||
#include <opm/autodiff/BlackoilSolventState.hpp>
|
||||
#include <opm/output/data/Cells.hpp>
|
||||
#include <opm/output/data/Solution.hpp>
|
||||
#include <opm/output/data/Wells.hpp>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
std::vector< double > destripe( const std::vector< double >& v,
|
||||
size_t stride,
|
||||
size_t offset ) {
|
||||
|
||||
std::vector< double > dst( v.size() / stride );
|
||||
|
||||
size_t di = 0;
|
||||
for( size_t i = offset; i < v.size(); i += stride ) {
|
||||
dst[ di++ ] = v[ i ];
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
std::vector< double >& stripe( const std::vector< double >& v,
|
||||
size_t stride,
|
||||
size_t offset,
|
||||
std::vector< double >& dst ) {
|
||||
|
||||
/* does little range checking etc; for future revisions */
|
||||
size_t vi = 0;
|
||||
for( size_t i = offset; i < dst.size(); i += stride ) {
|
||||
dst[ i ] = v[ vi++ ];
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
data::Solution simToSolution( const SimulationDataContainer& reservoir,
|
||||
PhaseUsage phases ) {
|
||||
data::Solution sol;
|
||||
sol.insert( "PRESSURE", UnitSystem::measure::pressure, reservoir.pressure() , data::TargetType::RESTART_SOLUTION);
|
||||
sol.insert( "TEMP" , UnitSystem::measure::temperature, reservoir.temperature() , data::TargetType::RESTART_SOLUTION );
|
||||
|
||||
const auto ph = reservoir.numPhases();
|
||||
const auto& sat = reservoir.saturation();
|
||||
|
||||
const auto aqua = BlackoilPhases::Aqua;
|
||||
const auto vapour = BlackoilPhases::Vapour;
|
||||
|
||||
if( phases.phase_used[ aqua ] ) {
|
||||
sol.insert( "SWAT", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ aqua ] ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if( phases.phase_used[ vapour ] ) {
|
||||
sol.insert( "SGAS", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ vapour ] ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if( reservoir.hasCellData( BlackoilState::GASOILRATIO ) ) {
|
||||
sol.insert( "RS", UnitSystem::measure::gas_oil_ratio, reservoir.getCellData( BlackoilState::GASOILRATIO ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if( reservoir.hasCellData( BlackoilState::RV ) ) {
|
||||
sol.insert( "RV", UnitSystem::measure::oil_gas_ratio, reservoir.getCellData( BlackoilState::RV ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if (reservoir.hasCellData( BlackoilSolventState::SSOL)) {
|
||||
sol.insert( "SSOL", UnitSystem::measure::identity, reservoir.getCellData( BlackoilSolventState::SSOL ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
return sol;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void solutionToSim( const data::Solution& sol,
|
||||
PhaseUsage phases,
|
||||
SimulationDataContainer& state ) {
|
||||
|
||||
const auto stride = phases.num_phases;
|
||||
|
||||
if( sol.has( "SWAT" ) ) {
|
||||
stripe( sol.data( "SWAT" ),
|
||||
stride,
|
||||
phases.phase_pos[ BlackoilPhases::Aqua ],
|
||||
state.saturation() );
|
||||
}
|
||||
|
||||
if( sol.has( "SGAS" ) ) {
|
||||
stripe( sol.data( "SGAS" ),
|
||||
stride,
|
||||
phases.phase_pos[ BlackoilPhases::Vapour ],
|
||||
state.saturation() );
|
||||
}
|
||||
|
||||
for (size_t c = 0; c < state.numCells(); ++c) {
|
||||
double& so = state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Liquid ]];
|
||||
so = 1.0;
|
||||
if (phases.phase_used[ BlackoilPhases::Aqua]) {
|
||||
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Aqua ]];
|
||||
}
|
||||
if (phases.phase_used[ BlackoilPhases::Vapour]) {
|
||||
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Vapour ]];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( sol.has( "PRESSURE" ) ) {
|
||||
state.pressure() = sol.data( "PRESSURE" );
|
||||
}
|
||||
|
||||
if( sol.has( "TEMP" ) ) {
|
||||
state.temperature() = sol.data( "TEMP" );
|
||||
}
|
||||
|
||||
if( sol.has( "RS" ) ) {
|
||||
state.getCellData( "GASOILRATIO" ) = sol.data( "RS" );
|
||||
}
|
||||
|
||||
if( sol.has( "RV" ) ) {
|
||||
state.getCellData( "RV" ) = sol.data( "RV" );
|
||||
}
|
||||
|
||||
if (sol.has( "SSOL" ) ) {
|
||||
state.getCellData("SSOL") = sol.data("SSOL");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void wellsToState( const data::Wells& wells,
|
||||
PhaseUsage phases,
|
||||
WellStateFullyImplicitBlackoil& state ) {
|
||||
|
||||
using rt = data::Rates::opt;
|
||||
|
||||
const auto np = phases.num_phases;
|
||||
|
||||
std::vector< rt > phs( np );
|
||||
if( phases.phase_used[BlackoilPhases::Aqua] ) {
|
||||
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
|
||||
}
|
||||
|
||||
if( phases.phase_used[BlackoilPhases::Liquid] ) {
|
||||
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
|
||||
}
|
||||
|
||||
if( phases.phase_used[BlackoilPhases::Vapour] ) {
|
||||
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
|
||||
}
|
||||
|
||||
for( const auto& wm : state.wellMap() ) {
|
||||
const auto well_index = wm.second[ 0 ];
|
||||
const auto& well = wells.at( wm.first );
|
||||
|
||||
state.bhp()[ well_index ] = well.bhp;
|
||||
state.temperature()[ well_index ] = well.temperature;
|
||||
state.currentControls()[ well_index ] = well.control;
|
||||
|
||||
const auto wellrate_index = well_index * np;
|
||||
for( size_t i = 0; i < phs.size(); ++i ) {
|
||||
assert( well.rates.has( phs[ i ] ) );
|
||||
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
|
||||
}
|
||||
|
||||
const auto perforation_pressure = []( const data::Completion& comp ) {
|
||||
return comp.pressure;
|
||||
};
|
||||
|
||||
const auto perforation_reservoir_rate = []( const data::Completion& comp ) {
|
||||
return comp.reservoir_rate;
|
||||
};
|
||||
|
||||
std::transform( well.completions.begin(),
|
||||
well.completions.end(),
|
||||
state.perfPress().begin() + wm.second[ 1 ],
|
||||
perforation_pressure );
|
||||
|
||||
std::transform( well.completions.begin(),
|
||||
well.completions.end(),
|
||||
state.perfRates().begin() + wm.second[ 1 ],
|
||||
perforation_reservoir_rate );
|
||||
|
||||
int local_comp_index = 0;
|
||||
for (const data::Completion& comp : well.completions) {
|
||||
const int global_comp_index = wm.second[1] + local_comp_index;
|
||||
for (int phase_index = 0; phase_index < np; ++phase_index) {
|
||||
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
|
||||
}
|
||||
++local_comp_index;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void wellsToState( const data::Wells& wells,
|
||||
PhaseUsage phases,
|
||||
WellStateFullyImplicitBlackoilDense& state )
|
||||
{
|
||||
// Set base class variables.
|
||||
wellsToState(wells, phases, static_cast<WellStateFullyImplicitBlackoil&>(state));
|
||||
|
||||
// Set wellSolution() variable.
|
||||
state.setWellSolutions(phases);
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
@ -21,229 +21,56 @@
|
||||
#ifndef OPM_SIMULATORS_COMPAT_HPP
|
||||
#define OPM_SIMULATORS_COMPAT_HPP
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
|
||||
#include <opm/common/data/SimulationDataContainer.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <opm/core/simulator/BlackoilState.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
#include <opm/autodiff/BlackoilSolventState.hpp>
|
||||
#include <opm/output/data/Cells.hpp>
|
||||
#include <opm/output/data/Solution.hpp>
|
||||
#include <opm/output/data/Wells.hpp>
|
||||
#include <opm/core/props/BlackoilPhases.hpp>
|
||||
#include <vector>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
inline std::vector< double > destripe( const std::vector< double >& v,
|
||||
size_t stride,
|
||||
size_t offset ) {
|
||||
|
||||
std::vector< double > dst( v.size() / stride );
|
||||
|
||||
size_t di = 0;
|
||||
for( size_t i = offset; i < v.size(); i += stride ) {
|
||||
dst[ di++ ] = v[ i ];
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
inline std::vector< double >& stripe( const std::vector< double >& v,
|
||||
size_t stride,
|
||||
size_t offset,
|
||||
std::vector< double >& dst ) {
|
||||
|
||||
/* does little range checking etc; for future revisions */
|
||||
size_t vi = 0;
|
||||
for( size_t i = offset; i < dst.size(); i += stride ) {
|
||||
dst[ i ] = v[ vi++ ];
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
inline data::Solution simToSolution( const SimulationDataContainer& reservoir,
|
||||
PhaseUsage phases ) {
|
||||
data::Solution sol;
|
||||
sol.insert( "PRESSURE", UnitSystem::measure::pressure, reservoir.pressure() , data::TargetType::RESTART_SOLUTION);
|
||||
sol.insert( "TEMP" , UnitSystem::measure::temperature, reservoir.temperature() , data::TargetType::RESTART_SOLUTION );
|
||||
|
||||
const auto ph = reservoir.numPhases();
|
||||
const auto& sat = reservoir.saturation();
|
||||
|
||||
const auto aqua = BlackoilPhases::Aqua;
|
||||
const auto vapour = BlackoilPhases::Vapour;
|
||||
|
||||
if( phases.phase_used[ aqua ] ) {
|
||||
sol.insert( "SWAT", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ aqua ] ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if( phases.phase_used[ vapour ] ) {
|
||||
sol.insert( "SGAS", UnitSystem::measure::identity, destripe( sat, ph, phases.phase_pos[ vapour ] ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if( reservoir.hasCellData( BlackoilState::GASOILRATIO ) ) {
|
||||
sol.insert( "RS", UnitSystem::measure::gas_oil_ratio, reservoir.getCellData( BlackoilState::GASOILRATIO ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if( reservoir.hasCellData( BlackoilState::RV ) ) {
|
||||
sol.insert( "RV", UnitSystem::measure::oil_gas_ratio, reservoir.getCellData( BlackoilState::RV ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
if (reservoir.hasCellData( BlackoilSolventState::SSOL)) {
|
||||
sol.insert( "SSOL", UnitSystem::measure::identity, reservoir.getCellData( BlackoilSolventState::SSOL ) , data::TargetType::RESTART_SOLUTION );
|
||||
}
|
||||
|
||||
return sol;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
inline void solutionToSim( const data::Solution& sol,
|
||||
PhaseUsage phases,
|
||||
SimulationDataContainer& state ) {
|
||||
|
||||
const auto stride = phases.num_phases;
|
||||
|
||||
if( sol.has( "SWAT" ) ) {
|
||||
stripe( sol.data( "SWAT" ),
|
||||
stride,
|
||||
phases.phase_pos[ BlackoilPhases::Aqua ],
|
||||
state.saturation() );
|
||||
}
|
||||
|
||||
if( sol.has( "SGAS" ) ) {
|
||||
stripe( sol.data( "SGAS" ),
|
||||
stride,
|
||||
phases.phase_pos[ BlackoilPhases::Vapour ],
|
||||
state.saturation() );
|
||||
}
|
||||
|
||||
for (size_t c = 0; c < state.numCells(); ++c) {
|
||||
double& so = state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Liquid ]];
|
||||
so = 1.0;
|
||||
if (phases.phase_used[ BlackoilPhases::Aqua]) {
|
||||
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Aqua ]];
|
||||
}
|
||||
if (phases.phase_used[ BlackoilPhases::Vapour]) {
|
||||
so -= state.saturation()[phases.num_phases*c + phases.phase_pos[ BlackoilPhases::Vapour ]];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( sol.has( "PRESSURE" ) ) {
|
||||
state.pressure() = sol.data( "PRESSURE" );
|
||||
}
|
||||
|
||||
if( sol.has( "TEMP" ) ) {
|
||||
state.temperature() = sol.data( "TEMP" );
|
||||
}
|
||||
|
||||
if( sol.has( "RS" ) ) {
|
||||
state.getCellData( "GASOILRATIO" ) = sol.data( "RS" );
|
||||
}
|
||||
|
||||
if( sol.has( "RV" ) ) {
|
||||
state.getCellData( "RV" ) = sol.data( "RV" );
|
||||
}
|
||||
|
||||
if (sol.has( "SSOL" ) ) {
|
||||
state.getCellData("SSOL") = sol.data("SSOL");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
inline void wellsToState( const data::Wells& wells,
|
||||
PhaseUsage phases,
|
||||
WellStateFullyImplicitBlackoil& state ) {
|
||||
|
||||
using rt = data::Rates::opt;
|
||||
|
||||
const auto np = phases.num_phases;
|
||||
|
||||
std::vector< rt > phs( np );
|
||||
if( phases.phase_used[BlackoilPhases::Aqua] ) {
|
||||
phs.at( phases.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
|
||||
}
|
||||
|
||||
if( phases.phase_used[BlackoilPhases::Liquid] ) {
|
||||
phs.at( phases.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
|
||||
}
|
||||
|
||||
if( phases.phase_used[BlackoilPhases::Vapour] ) {
|
||||
phs.at( phases.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
|
||||
}
|
||||
|
||||
for( const auto& wm : state.wellMap() ) {
|
||||
const auto well_index = wm.second[ 0 ];
|
||||
const auto& well = wells.at( wm.first );
|
||||
|
||||
state.bhp()[ well_index ] = well.bhp;
|
||||
state.temperature()[ well_index ] = well.temperature;
|
||||
state.currentControls()[ well_index ] = well.control;
|
||||
|
||||
const auto wellrate_index = well_index * np;
|
||||
for( size_t i = 0; i < phs.size(); ++i ) {
|
||||
assert( well.rates.has( phs[ i ] ) );
|
||||
state.wellRates()[ wellrate_index + i ] = well.rates.get( phs[ i ] );
|
||||
}
|
||||
|
||||
const auto perforation_pressure = []( const data::Completion& comp ) {
|
||||
return comp.pressure;
|
||||
};
|
||||
|
||||
const auto perforation_reservoir_rate = []( const data::Completion& comp ) {
|
||||
return comp.reservoir_rate;
|
||||
};
|
||||
|
||||
std::transform( well.completions.begin(),
|
||||
well.completions.end(),
|
||||
state.perfPress().begin() + wm.second[ 1 ],
|
||||
perforation_pressure );
|
||||
|
||||
std::transform( well.completions.begin(),
|
||||
well.completions.end(),
|
||||
state.perfRates().begin() + wm.second[ 1 ],
|
||||
perforation_reservoir_rate );
|
||||
|
||||
int local_comp_index = 0;
|
||||
for (const data::Completion& comp : well.completions) {
|
||||
const int global_comp_index = wm.second[1] + local_comp_index;
|
||||
for (int phase_index = 0; phase_index < np; ++phase_index) {
|
||||
state.perfPhaseRates()[global_comp_index*np + phase_index] = comp.rates.get(phs[phase_index]);
|
||||
}
|
||||
++local_comp_index;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Forward declarations
|
||||
class SimulationDataContainer;
|
||||
class WellStateFullyImplicitBlackoil;
|
||||
class WellStateFullyImplicitBlackoilDense;
|
||||
|
||||
/// Extract single data vector from striped data.
|
||||
/// \return u such that u[i] = v[offset + i*stride].
|
||||
std::vector< double > destripe( const std::vector< double >& v,
|
||||
size_t stride,
|
||||
size_t offset );
|
||||
|
||||
/// Inject single data vector into striped data.
|
||||
/// \return reference to dst input, that is changed so that
|
||||
/// dst[offset + i*stride] = v[i]. This is done for
|
||||
/// i = 0..(dst.size()/stride).
|
||||
std::vector< double >& stripe( const std::vector< double >& v,
|
||||
size_t stride,
|
||||
size_t offset,
|
||||
std::vector< double >& dst );
|
||||
|
||||
/// Returns Solution with the following fields:
|
||||
/// PRESSURE, TEMP (unconditionally)
|
||||
/// SWAT, SGAS, RS, RV, SSOL (if appropriate fields present in input)
|
||||
data::Solution simToSolution( const SimulationDataContainer& reservoir,
|
||||
PhaseUsage phases );
|
||||
|
||||
/// Copies the following fields from sol into state (all conditionally):
|
||||
/// PRESSURE, TEMP, SWAT, SGAS, RS, RV, SSOL
|
||||
void solutionToSim( const data::Solution& sol,
|
||||
PhaseUsage phases,
|
||||
SimulationDataContainer& state );
|
||||
|
||||
/// Copies the following fields from wells into state.
|
||||
/// bhp, temperature, currentControls, wellRates, perfPress, perfRates, perfPhaseRates
|
||||
void wellsToState( const data::Wells& wells,
|
||||
PhaseUsage phases,
|
||||
WellStateFullyImplicitBlackoil& state );
|
||||
|
||||
/// As the WellStateFullyImplicitBlackoil overload, but also sets
|
||||
/// the wellSolution field from the values of the other fields.
|
||||
void wellsToState( const data::Wells& wells,
|
||||
PhaseUsage phases,
|
||||
WellStateFullyImplicitBlackoilDense& state );
|
||||
|
||||
}
|
||||
|
||||
|
@ -395,13 +395,13 @@ namespace Opm
|
||||
}
|
||||
|
||||
|
||||
template <class Grid, class WellStateFullyImplicitBlackOel>
|
||||
template <class Grid, class WellState>
|
||||
inline void
|
||||
BlackoilOutputWriter::
|
||||
initFromRestartFile( const PhaseUsage& phaseUsage,
|
||||
const Grid& grid,
|
||||
SimulationDataContainer& simulatorstate,
|
||||
WellStateFullyImplicitBlackOel& wellstate)
|
||||
WellState& wellstate)
|
||||
{
|
||||
std::map<std::string, UnitSystem::measure> solution_keys {{"PRESSURE" , UnitSystem::measure::pressure},
|
||||
{"SWAT" , UnitSystem::measure::identity},
|
||||
|
@ -35,6 +35,7 @@
|
||||
#include <map>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
@ -67,52 +68,94 @@ namespace Opm
|
||||
// call init on base class
|
||||
BaseType :: init(wells, state, prevState);
|
||||
|
||||
// if there are no well, do nothing in init
|
||||
if (wells == 0) {
|
||||
setWellSolutions(pu);
|
||||
setWellSolutionsFromPrevState(prevState);
|
||||
}
|
||||
|
||||
|
||||
template <class PrevState>
|
||||
void setWellSolutionsFromPrevState(const PrevState& prevState)
|
||||
{
|
||||
// Set nw and np, or return if no wells.
|
||||
if (wells_.get() == nullptr) {
|
||||
return;
|
||||
}
|
||||
const int nw = wells_->number_of_wells;
|
||||
if (nw == 0) {
|
||||
return;
|
||||
}
|
||||
const int np = wells_->number_of_phases;
|
||||
|
||||
const int nw = wells->number_of_wells;
|
||||
if( nw == 0 ) return ;
|
||||
// intialize wells that have been there before
|
||||
// order may change so the mapping is based on the well name
|
||||
// if there are no well, do nothing in init
|
||||
if( ! prevState.wellMap().empty() )
|
||||
{
|
||||
typedef typename WellMapType :: const_iterator const_iterator;
|
||||
const_iterator end = prevState.wellMap().end();
|
||||
int nw_old = prevState.bhp().size();
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
std::string name( wells_->name[ w ] );
|
||||
const_iterator it = prevState.wellMap().find( name );
|
||||
if( it != end )
|
||||
{
|
||||
const int oldIndex = (*it).second[ 0 ];
|
||||
const int newIndex = w;
|
||||
|
||||
const int np = wells->number_of_phases;
|
||||
// wellSolutions
|
||||
for( int i = 0; i < np; ++i)
|
||||
{
|
||||
wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Set wellSolutions() based on the base class members.
|
||||
void setWellSolutions(const PhaseUsage& pu)
|
||||
{
|
||||
// Set nw and np, or return if no wells.
|
||||
if (wells_.get() == nullptr) {
|
||||
return;
|
||||
}
|
||||
const int nw = wells_->number_of_wells;
|
||||
if (nw == 0) {
|
||||
return;
|
||||
}
|
||||
const int np = wells_->number_of_phases;
|
||||
|
||||
well_solutions_.clear();
|
||||
well_solutions_.resize(nw * np, 0.0);
|
||||
std::vector<double> g = {1.0,1.0,0.01};
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
WellControls* wc = wells->ctrls[w];
|
||||
WellControls* wc = wells_->ctrls[w];
|
||||
|
||||
// The current control in the well state overrides
|
||||
// the current control set in the Wells struct, which
|
||||
// is instead treated as a default.
|
||||
const int current = currentControls()[w];
|
||||
well_controls_set_current( wc, current);
|
||||
const WellType& well_type = wells->type[w];
|
||||
const WellType& well_type = wells_->type[w];
|
||||
|
||||
switch (well_controls_iget_type(wc, current)) {
|
||||
case THP: // Intentional fall-through
|
||||
case BHP:
|
||||
{
|
||||
if (well_type == INJECTOR) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
well_solutions_[w] += wellRates()[np*w + p] * wells->comp_frac[np*w + p];
|
||||
well_solutions_[w] += wellRates()[np*w + p] * wells_->comp_frac[np*w + p];
|
||||
}
|
||||
} else {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
well_solutions_[w] += g[p] * wellRates()[np*w + p];
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
case RESERVOIR_RATE: // Intentional fall-through
|
||||
case SURFACE_RATE:
|
||||
{
|
||||
wellSolutions()[w] = bhp()[w];
|
||||
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
@ -135,41 +178,16 @@ namespace Opm
|
||||
}
|
||||
} else {
|
||||
if( pu.phase_used[Water] ) {
|
||||
wellSolutions()[nw + w] = wells->comp_frac[np*w + waterpos];
|
||||
wellSolutions()[nw + w] = wells_->comp_frac[np*w + waterpos];
|
||||
}
|
||||
if( pu.phase_used[Gas] ) {
|
||||
wellSolutions()[2*nw + w] = wells->comp_frac[np*w + gaspos];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// intialize wells that have been there before
|
||||
// order may change so the mapping is based on the well name
|
||||
if( ! prevState.wellMap().empty() )
|
||||
{
|
||||
typedef typename WellMapType :: const_iterator const_iterator;
|
||||
const_iterator end = prevState.wellMap().end();
|
||||
int nw_old = prevState.bhp().size();
|
||||
for (int w = 0; w < nw; ++w) {
|
||||
std::string name( wells->name[ w ] );
|
||||
const_iterator it = prevState.wellMap().find( name );
|
||||
if( it != end )
|
||||
{
|
||||
const int oldIndex = (*it).second[ 0 ];
|
||||
const int newIndex = w;
|
||||
|
||||
// wellSolutions
|
||||
for( int i = 0; i < np; ++i)
|
||||
{
|
||||
wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
|
||||
}
|
||||
|
||||
wellSolutions()[2*nw + w] = wells_->comp_frac[np*w + gaspos];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class State>
|
||||
void resize(const Wells* wells, const State& state, const PhaseUsage& pu ) {
|
||||
const WellStateFullyImplicitBlackoilDense dummy_state{}; // Init with an empty previous state only resizes
|
||||
@ -186,6 +204,7 @@ namespace Opm
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
std::vector<double> well_solutions_;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user