mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #3339 from joakim-hove/perf-well-access
Perf well access
This commit is contained in:
@@ -1996,7 +1996,7 @@ namespace Opm {
|
||||
|
||||
auto& perf_pressure = well_state.perfPress(well_index);
|
||||
auto& perf_rates = well_state.perfRates(well_index);
|
||||
auto * perf_phase_rates = &well_state.mutable_perfPhaseRates()[wm.second[1]*np];
|
||||
auto * perf_phase_rates = well_state.perfPhaseRates(well_index);
|
||||
const auto& perf_data = this->well_perf_data_[well_index];
|
||||
|
||||
for (std::size_t perf_index = 0; perf_index < perf_data.size(); perf_index++) {
|
||||
@@ -3373,7 +3373,7 @@ namespace Opm {
|
||||
|
||||
auto& well_info = *local_parallel_well_info_[wellID];
|
||||
const int num_perf_this_well = well_info.communication().sum(well_perf_data_[wellID].size());
|
||||
auto * perf_phase_rate = &this->wellState().perfPhaseRates()[connpos];
|
||||
auto * perf_phase_rate = this->wellState().perfPhaseRates(wellID);
|
||||
|
||||
for (int perf = 0; perf < num_perf_this_well; ++perf) {
|
||||
const int cell_idx = well_perf_data_[wellID][perf].cell_index;
|
||||
|
||||
@@ -2637,8 +2637,7 @@ namespace Opm
|
||||
|
||||
// calculating the perforation rate for each perforation that belongs to this segment
|
||||
const EvalWell seg_pressure = getSegmentPressure(seg);
|
||||
const int rate_start_offset = first_perf_ * number_of_phases_;
|
||||
auto * perf_rates = &well_state.mutable_perfPhaseRates()[rate_start_offset];
|
||||
auto * perf_rates = well_state.perfPhaseRates(this->index_of_well_);
|
||||
auto& perf_press_state = well_state.perfPress(this->index_of_well_);
|
||||
for (const int perf : segment_perforations_[seg]) {
|
||||
const int cell_idx = well_cells_[perf];
|
||||
|
||||
@@ -591,8 +591,7 @@ namespace Opm
|
||||
const int np = number_of_phases_;
|
||||
|
||||
std::vector<RateVector> connectionRates = connectionRates_; // Copy to get right size.
|
||||
const int rate_start_offset = first_perf_ * number_of_phases_;
|
||||
auto * perf_rates = &well_state.mutable_perfPhaseRates()[rate_start_offset];
|
||||
auto * perf_rates = well_state.perfPhaseRates(this->index_of_well_);
|
||||
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
||||
// Calculate perforation quantities.
|
||||
std::vector<EvalWell> cq_s(num_components_, {numWellEq_ + numEq, 0.0});
|
||||
@@ -629,7 +628,7 @@ namespace Opm
|
||||
|
||||
// Store the perforation phase flux for later usage.
|
||||
if (has_solvent && componentIdx == contiSolventEqIdx) {
|
||||
auto * perf_rate_solvent = &well_state.perfRateSolvent()[first_perf_];
|
||||
auto * perf_rate_solvent = well_state.perfRateSolvent(this->index_of_well_);
|
||||
perf_rate_solvent[perf] = cq_s[componentIdx].value();
|
||||
} else {
|
||||
perf_rates[perf*np + ebosCompIdxToFlowCompIdx(componentIdx)] = cq_s[componentIdx].value();
|
||||
@@ -795,7 +794,7 @@ namespace Opm
|
||||
cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection());
|
||||
}
|
||||
// Note. Efficiency factor is handled in the output layer
|
||||
auto * perf_rate_polymer = &well_state.perfRatePolymer()[first_perf_];
|
||||
auto * perf_rate_polymer = well_state.perfRatePolymer(this->index_of_well_);
|
||||
perf_rate_polymer[perf] = cq_s_poly.value();
|
||||
|
||||
cq_s_poly *= well_efficiency_factor_;
|
||||
@@ -828,7 +827,7 @@ namespace Opm
|
||||
const double dis_gas_frac = perf_dis_gas_rate / cq_s_zfrac_effective.value();
|
||||
cq_s_zfrac_effective *= extendEval(dis_gas_frac*intQuants.xVolume() + (1.0-dis_gas_frac)*intQuants.yVolume());
|
||||
}
|
||||
auto * perf_rate_solvent = &well_state.perfRateSolvent()[first_perf_];
|
||||
auto * perf_rate_solvent = well_state.perfRateSolvent(this->index_of_well_);
|
||||
perf_rate_solvent[perf] = cq_s_zfrac_effective.value();
|
||||
|
||||
cq_s_zfrac_effective *= well_efficiency_factor_;
|
||||
@@ -845,7 +844,7 @@ namespace Opm
|
||||
cq_s_sm *= extendEval(intQuants.fluidState().saltConcentration());
|
||||
}
|
||||
// Note. Efficiency factor is handled in the output layer
|
||||
auto * perf_rate_brine = &well_state.perfRateBrine()[this->first_perf_];
|
||||
auto * perf_rate_brine = well_state.perfRateBrine(this->index_of_well_);
|
||||
perf_rate_brine[perf] = cq_s_sm.value();
|
||||
|
||||
cq_s_sm *= well_efficiency_factor_;
|
||||
@@ -1305,8 +1304,8 @@ namespace Opm
|
||||
// other primary variables related to polymer injectivity study
|
||||
if constexpr (Base::has_polymermw) {
|
||||
if (this->isInjector()) {
|
||||
auto * perf_water_velocity = &well_state.perfWaterVelocity()[this->first_perf_];
|
||||
auto * perf_skin_pressure = &well_state.perfSkinPressure()[this->first_perf_];
|
||||
auto * perf_water_velocity = well_state.perfWaterVelocity(this->index_of_well_);
|
||||
auto * perf_skin_pressure = well_state.perfSkinPressure(this->index_of_well_);
|
||||
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
||||
perf_water_velocity[perf] = primary_variables_[Bhp + 1 + perf];
|
||||
perf_skin_pressure[perf] = primary_variables_[Bhp + 1 + number_of_perforations_ + perf];
|
||||
@@ -2105,7 +2104,7 @@ namespace Opm
|
||||
const int nperf = number_of_perforations_;
|
||||
const int np = number_of_phases_;
|
||||
std::vector<double> perfRates(b_perf.size(),0.0);
|
||||
const auto * perf_rates_state = &well_state.perfPhaseRates()[first_perf_ * np];
|
||||
const auto * perf_rates_state = well_state.perfPhaseRates(this->index_of_well_);
|
||||
|
||||
for (int perf = 0; perf < nperf; ++perf) {
|
||||
for (int comp = 0; comp < np; ++comp) {
|
||||
@@ -2114,7 +2113,7 @@ namespace Opm
|
||||
}
|
||||
|
||||
if constexpr (has_solvent) {
|
||||
const auto * solvent_perf_rates_state = &well_state.perfRateSolvent()[this->first_perf_];
|
||||
const auto * solvent_perf_rates_state = well_state.perfRateSolvent(this->index_of_well_);
|
||||
for (int perf = 0; perf < nperf; ++perf) {
|
||||
perfRates[perf * num_components_ + contiSolventEqIdx] = solvent_perf_rates_state[perf];
|
||||
}
|
||||
@@ -2833,8 +2832,8 @@ namespace Opm
|
||||
// other primary variables related to polymer injection
|
||||
if constexpr (Base::has_polymermw) {
|
||||
if (this->isInjector()) {
|
||||
const auto * water_velocity = &well_state.perfWaterVelocity()[first_perf_];
|
||||
const auto * skin_pressure = &well_state.perfSkinPressure()[first_perf_];
|
||||
const auto * water_velocity = well_state.perfWaterVelocity(this->index_of_well_);
|
||||
const auto * skin_pressure = well_state.perfSkinPressure(this->index_of_well_);
|
||||
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
||||
primary_variables_[Bhp + 1 + perf] = water_velocity[perf];
|
||||
primary_variables_[Bhp + 1 + number_of_perforations_ + perf] = skin_pressure[perf];
|
||||
@@ -3202,7 +3201,7 @@ namespace Opm
|
||||
{
|
||||
if constexpr (Base::has_polymermw) {
|
||||
if (this->isInjector()) {
|
||||
auto * perf_water_throughput = &well_state.perfThroughput()[first_perf_];
|
||||
auto * perf_water_throughput = well_state.perfThroughput(this->index_of_well_);
|
||||
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
||||
const double perf_water_vel = primary_variables_[Bhp + 1 + perf];
|
||||
// we do not consider the formation damage due to water flowing from reservoir into wellbore
|
||||
@@ -3263,7 +3262,7 @@ namespace Opm
|
||||
const EvalWell eq_wat_vel = primary_variables_evaluation_[wat_vel_index] - water_velocity;
|
||||
resWell_[0][wat_vel_index] = eq_wat_vel.value();
|
||||
|
||||
const auto * perf_water_throughput = &well_state.perfThroughput()[this->first_perf_];
|
||||
const auto * perf_water_throughput = well_state.perfThroughput(this->index_of_well_);
|
||||
const double throughput = perf_water_throughput[perf];
|
||||
const int pskin_index = Bhp + 1 + number_of_perforations_ + perf;
|
||||
|
||||
@@ -3442,7 +3441,7 @@ namespace Opm
|
||||
const int wat_vel_index = Bhp + 1 + perf;
|
||||
const EvalWell water_velocity = primary_variables_evaluation_[wat_vel_index];
|
||||
if (water_velocity > 0.) { // injecting
|
||||
const auto * perf_water_throughput = &well_state.perfThroughput()[this->first_perf_];
|
||||
const auto * perf_water_throughput = well_state.perfThroughput(this->index_of_well_);
|
||||
const double throughput = perf_water_throughput[perf];
|
||||
const EvalWell molecular_weight = wpolymermw(throughput, water_velocity, deferred_logger);
|
||||
cq_s_polymw *= molecular_weight;
|
||||
|
||||
@@ -846,7 +846,7 @@ checkMaxRatioLimitCompletions(const WellState& well_state,
|
||||
double max_ratio_completion = 0;
|
||||
const int np = number_of_phases_;
|
||||
|
||||
const auto * perf_phase_rates = &well_state.perfPhaseRates()[first_perf_ * np];
|
||||
const auto * perf_phase_rates = well_state.perfPhaseRates(this->index_of_well_);
|
||||
// look for the worst_offending_completion
|
||||
for (const auto& completion : completions_) {
|
||||
std::vector<double> completion_rates(np, 0.0);
|
||||
|
||||
@@ -298,7 +298,9 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
const int num_perf_this_well = well_info[2];
|
||||
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
|
||||
auto& perf_press = this->perfPress(w);
|
||||
auto * phase_rates = &this->mutable_perfPhaseRates()[connpos * this->numPhases()];
|
||||
|
||||
first_perf_index_[w] = connpos;
|
||||
auto phase_rates = this->perfPhaseRates(w);
|
||||
|
||||
for (int perf = 0; perf < num_perf_this_well; ++perf) {
|
||||
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
|
||||
@@ -308,7 +310,6 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
}
|
||||
perf_press[perf] = cellPressures[well_perf_data[w][perf].cell_index];
|
||||
}
|
||||
first_perf_index_[w] = connpos;
|
||||
|
||||
this->well_reservoir_rates_.add(wname, std::vector<double>(np, 0));
|
||||
this->well_dissolved_gas_rates_.add(wname, 0);
|
||||
@@ -408,7 +409,6 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
}
|
||||
|
||||
// perfPhaseRates
|
||||
const int oldPerf_idx_beg = (*it).second[ 1 ];
|
||||
const int num_perf_old_well = (*it).second[ 2 ];
|
||||
const auto new_iter = this->wellMap().find(well.name());
|
||||
if (new_iter == this->wellMap().end()) {
|
||||
@@ -418,7 +418,6 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
};
|
||||
}
|
||||
|
||||
const int connpos = new_iter->second[1];
|
||||
const int num_perf_this_well = new_iter->second[2];
|
||||
|
||||
const int num_perf_changed = parallel_well_info[w]->communication()
|
||||
@@ -432,8 +431,8 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
// number of perforations.
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
const auto * src_rates = &prevState->perfPhaseRates()[oldPerf_idx_beg* np];
|
||||
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
|
||||
const auto * src_rates = prevState->perfPhaseRates(oldIndex);
|
||||
auto * target_rates = this->perfPhaseRates(newIndex);
|
||||
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
|
||||
for (int p = 0; p < np; p++) {
|
||||
target_rates[perf_index*np + p] = src_rates[perf_index*np + p];
|
||||
@@ -441,7 +440,7 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
}
|
||||
} else {
|
||||
const int global_num_perf_this_well = parallel_well_info[w]->communication().sum(num_perf_this_well);
|
||||
auto * target_rates = &this->mutable_perfPhaseRates()[connpos*np];
|
||||
auto * target_rates = this->perfPhaseRates(newIndex);
|
||||
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
|
||||
for (int p = 0; p < np; ++p) {
|
||||
target_rates[perf_index*np + p] = wellRates(w)[p] / double(global_num_perf_this_well);
|
||||
@@ -464,10 +463,11 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
if (pu.has_solvent) {
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
int oldPerf_idx = oldPerf_idx_beg;
|
||||
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
|
||||
auto * solvent_target = this->perfRateSolvent(newIndex);
|
||||
const auto * solvent_src = prevState->perfRateSolvent(oldIndex);
|
||||
for (int perf = 0; perf < num_perf_this_well; ++perf)
|
||||
{
|
||||
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
|
||||
solvent_target[perf] = solvent_src[perf];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -480,13 +480,13 @@ void WellState::init(const std::vector<double>& cellPressures,
|
||||
if (pu.has_polymermw) {
|
||||
if (global_num_perf_same)
|
||||
{
|
||||
auto * throughput_target = &perf_water_throughput_[connpos];
|
||||
auto * pressure_target = &perf_skin_pressure_[connpos];
|
||||
auto * velocity_target = &perf_water_velocity_[connpos];
|
||||
auto * throughput_target = this->perfThroughput(newIndex);
|
||||
auto * pressure_target = this->perfSkinPressure(newIndex);
|
||||
auto * velocity_target = this->perfWaterVelocity(newIndex);
|
||||
|
||||
const auto * throughput_src = &prevState->perfThroughput()[oldPerf_idx_beg];
|
||||
const auto * pressure_src = &prevState->perfSkinPressure()[oldPerf_idx_beg];
|
||||
const auto * velocity_src = &prevState->perfWaterVelocity()[oldPerf_idx_beg];
|
||||
const auto * throughput_src = prevState->perfThroughput(oldIndex);
|
||||
const auto * pressure_src = prevState->perfSkinPressure(oldIndex);
|
||||
const auto * velocity_src = prevState->perfWaterVelocity(oldIndex);
|
||||
|
||||
for (int perf = 0; perf < num_perf_this_well; ++perf)
|
||||
{
|
||||
@@ -770,7 +770,7 @@ void WellState::reportConnections(data::Well& well,
|
||||
for( auto& comp : well.connections) {
|
||||
const auto connPhaseOffset = np * (wt.second[1] + local_comp_index);
|
||||
|
||||
const auto * rates = &this->perfPhaseRates()[connPhaseOffset];
|
||||
const auto * rates = &this->perfPhaseRates(well_index)[np*local_comp_index];
|
||||
const auto connPI = this->connectionProductivityIndex().begin() + connPhaseOffset;
|
||||
|
||||
for( int i = 0; i < np; ++i ) {
|
||||
@@ -778,15 +778,15 @@ void WellState::reportConnections(data::Well& well,
|
||||
comp.rates.set( pi [ i ], *(connPI + i) );
|
||||
}
|
||||
if ( pu.has_polymer ) {
|
||||
const auto * perf_polymer_rate = &this->perfRatePolymer()[wt.second[1]];
|
||||
const auto * perf_polymer_rate = this->perfRatePolymer(well_index);
|
||||
comp.rates.set( rt::polymer, perf_polymer_rate[local_comp_index]);
|
||||
}
|
||||
if ( pu.has_brine ) {
|
||||
const auto * perf_brine_rate = &this->perfRateBrine()[wt.second[1]];
|
||||
const auto * perf_brine_rate = this->perfRateBrine(well_index);
|
||||
comp.rates.set( rt::brine, perf_brine_rate[local_comp_index]);
|
||||
}
|
||||
if ( pu.has_solvent ) {
|
||||
const auto * perf_solvent_rate = &this->perfRateSolvent()[wt.second[1]];
|
||||
const auto * perf_solvent_rate = this->perfRateSolvent(well_index);
|
||||
comp.rates.set( rt::solvent, perf_solvent_rate[local_comp_index] );
|
||||
}
|
||||
|
||||
@@ -812,7 +812,6 @@ void WellState::initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
||||
const auto& well_ecl = wells_ecl[w];
|
||||
const auto& wname = wells_ecl[w].name();
|
||||
const auto& well_info = this->wellMap().at(wname);
|
||||
const int connpos = well_info[1];
|
||||
const int num_perf_this_well = well_info[2];
|
||||
|
||||
if ( well_ecl.isMultiSegment() ) {
|
||||
@@ -851,14 +850,12 @@ void WellState::initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
||||
|
||||
// for the seg_rates_, now it becomes a recursive solution procedure.
|
||||
{
|
||||
const int start_perf = connpos;
|
||||
|
||||
// make sure the information from wells_ecl consistent with wells
|
||||
assert((n_activeperf == num_perf_this_well) &&
|
||||
"Inconsistent number of reservoir connections in well");
|
||||
|
||||
if (pu.phase_used[Gas]) {
|
||||
auto * perf_rates = &this->mutable_perfPhaseRates()[np * start_perf];
|
||||
auto * perf_rates = this->perfPhaseRates(w);
|
||||
const int gaspos = pu.phase_pos[Gas];
|
||||
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
|
||||
// it will probably benefit the standard well too, while it needs to be justified
|
||||
@@ -869,7 +866,7 @@ void WellState::initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
||||
perf_rates[perf*np + gaspos] *= 100;
|
||||
}
|
||||
|
||||
const auto * perf_rates = &perfPhaseRates()[np*start_perf];
|
||||
const auto * perf_rates = this->perfPhaseRates(w);
|
||||
std::vector<double> perforation_rates(perf_rates, perf_rates + num_perf_this_well*np);
|
||||
|
||||
auto& segments = this->segments(w);
|
||||
@@ -955,19 +952,19 @@ WellState::calculateSegmentRates(const std::vector<std::vector<int>>& segment_in
|
||||
|
||||
double WellState::solventWellRate(const int w) const
|
||||
{
|
||||
const auto * perf_rates_solvent = &perfRateSolvent_[first_perf_index_[w]];
|
||||
const auto * perf_rates_solvent = this->perfRateSolvent(w);
|
||||
return parallel_well_info_[w]->sumPerfValues(perf_rates_solvent, perf_rates_solvent + this->numPerf(w));
|
||||
}
|
||||
|
||||
double WellState::polymerWellRate(const int w) const
|
||||
{
|
||||
const auto * perf_rates_polymer = &perfRatePolymer_[first_perf_index_[w]];
|
||||
const auto * perf_rates_polymer = this->perfRatePolymer(w);
|
||||
return parallel_well_info_[w]->sumPerfValues(perf_rates_polymer, perf_rates_polymer + this->numPerf(w));
|
||||
}
|
||||
|
||||
double WellState::brineWellRate(const int w) const
|
||||
{
|
||||
const auto * perf_rates_brine = &perfRateBrine_[first_perf_index_[w]];
|
||||
const auto * perf_rates_brine = this->perfRateBrine(w);
|
||||
return parallel_well_info_[w]->sumPerfValues(perf_rates_brine, perf_rates_brine + this->numPerf(w));
|
||||
}
|
||||
|
||||
|
||||
@@ -100,8 +100,13 @@ public:
|
||||
const SummaryState& summary_state);
|
||||
|
||||
/// One rate per phase and well connection.
|
||||
std::vector<double>& mutable_perfPhaseRates() { return perfphaserates_; }
|
||||
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
|
||||
double * perfPhaseRates(std::size_t well_index) {
|
||||
return &this->perfphaserates_[this->first_perf_index_[well_index] * this->numPhases()];
|
||||
}
|
||||
|
||||
const double * perfPhaseRates(std::size_t well_index) const {
|
||||
return &this->perfphaserates_[this->first_perf_index_[well_index] * this->numPhases()];
|
||||
}
|
||||
|
||||
/// One current control per injecting well.
|
||||
Well::InjectorCMode currentInjectionControl(std::size_t well_index) const { return current_injection_controls_[well_index]; }
|
||||
@@ -153,22 +158,37 @@ public:
|
||||
}
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
|
||||
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
|
||||
double * perfRateSolvent(std::size_t well_index) {
|
||||
return &perfRateSolvent_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
const double * perfRateSolvent(std::size_t well_index) const {
|
||||
return &perfRateSolvent_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
/// One rate pr well
|
||||
double solventWellRate(const int w) const;
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRatePolymer() { return perfRatePolymer_; }
|
||||
const std::vector<double>& perfRatePolymer() const { return perfRatePolymer_; }
|
||||
double * perfRatePolymer(std::size_t well_index) {
|
||||
return &this->perfRatePolymer_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
const double * perfRatePolymer(std::size_t well_index) const {
|
||||
return &this->perfRatePolymer_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
/// One rate pr well
|
||||
double polymerWellRate(const int w) const;
|
||||
|
||||
/// One rate pr well connection.
|
||||
std::vector<double>& perfRateBrine() { return perfRateBrine_; }
|
||||
const std::vector<double>& perfRateBrine() const { return perfRateBrine_; }
|
||||
double* perfRateBrine(std::size_t well_index) {
|
||||
return &this->perfRateBrine_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
const double* perfRateBrine(std::size_t well_index) const {
|
||||
return &this->perfRateBrine_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
/// One rate pr well
|
||||
double brineWellRate(const int w) const;
|
||||
@@ -238,28 +258,28 @@ public:
|
||||
return well_potentials_;
|
||||
}
|
||||
|
||||
std::vector<double>& perfThroughput() {
|
||||
return perf_water_throughput_;
|
||||
double * perfThroughput(std::size_t well_index) {
|
||||
return &perf_water_throughput_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
const std::vector<double>& perfThroughput() const {
|
||||
return perf_water_throughput_;
|
||||
const double * perfThroughput(std::size_t well_index) const {
|
||||
return &perf_water_throughput_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
std::vector<double>& perfSkinPressure() {
|
||||
return perf_skin_pressure_;
|
||||
double * perfSkinPressure(std::size_t well_index) {
|
||||
return &perf_skin_pressure_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
const std::vector<double>& perfSkinPressure() const {
|
||||
return perf_skin_pressure_;
|
||||
const double * perfSkinPressure(std::size_t well_index) const {
|
||||
return &perf_skin_pressure_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
std::vector<double>& perfWaterVelocity() {
|
||||
return perf_water_velocity_;
|
||||
double * perfWaterVelocity(std::size_t well_index) {
|
||||
return &perf_water_velocity_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
const std::vector<double>& perfWaterVelocity() const {
|
||||
return perf_water_velocity_;
|
||||
const double * perfWaterVelocity(std::size_t well_index) const {
|
||||
return &perf_water_velocity_[this->first_perf_index_[well_index]];
|
||||
}
|
||||
|
||||
template<class Comm>
|
||||
|
||||
Reference in New Issue
Block a user