Merge pull request #5 from totto82/dense_well

WIP New well model
This commit is contained in:
Andreas Lauser 2016-08-19 14:19:08 +02:00 committed by GitHub
commit 1415168729
8 changed files with 3413 additions and 138 deletions

File diff suppressed because it is too large Load Diff

View File

@ -37,6 +37,7 @@ namespace Opm {
, rv ( ADB::null())
, qs ( ADB::null())
, bhp ( ADB::null())
, wellVariables ( ADB::null())
, canonical_phase_pressures(3, ADB::null())
{
}
@ -47,6 +48,7 @@ namespace Opm {
ADB rv;
ADB qs;
ADB bhp;
ADB wellVariables;
// Below are quantities stored in the state for optimization purposes.
std::vector<ADB> canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active.
};

View File

@ -66,8 +66,8 @@ namespace Opm
// Possibly override IOConfig setting (from deck) for how often RESTART files should get written to disk (every N report step)
if (Base::param_.has("output_interval")) {
const int output_interval = Base::param_.get<int>("output_interval");
IOConfigPtr ioConfig = Base::eclipse_state_->getIOConfig();
ioConfig->overrideRestartWriteInterval(static_cast<size_t>(output_interval));
eclipse_state_->getRestartConfig().overrideRestartWriteInterval( size_t( output_interval ) );
}
// Possible to force initialization only behavior (NOSIM).

View File

@ -390,7 +390,7 @@ namespace Opm
//const int np = residual.material_balance_eq.size();
assert( np == int(residual.material_balance_eq.size()) );
std::vector<ADB> eqs;
eqs.reserve(np + 2);
eqs.reserve(np + 1);
for (int phase = 0; phase < np; ++phase) {
eqs.push_back(residual.material_balance_eq[phase]);
}
@ -401,14 +401,14 @@ namespace Opm
if( hasWells )
{
eqs.push_back(residual.well_flux_eq);
eqs.push_back(residual.well_eq);
//eqs.push_back(residual.well_eq);
// Eliminate the well-related unknowns, and corresponding equations.
elim_eqs.reserve(2);
elim_eqs.reserve(1);
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
elim_eqs.push_back(eqs[np]);
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
//elim_eqs.push_back(eqs[np]);
//eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
assert(int(eqs.size()) == np);
}
@ -500,7 +500,7 @@ namespace Opm
if ( hasWells ) {
// Compute full solution using the eliminated equations.
// Recovery in inverse order of elimination.
dx = recoverVariable(elim_eqs[1], dx, np);
//dx = recoverVariable(elim_eqs[1], dx, np);
dx = recoverVariable(elim_eqs[0], dx, np);
}
return dx;

View File

@ -25,11 +25,15 @@
#include <opm/autodiff/NonlinearSolver.hpp>
#include <opm/autodiff/BlackoilModelEbos.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/StandardWellsDense.hpp>
namespace Opm {
class SimulatorFullyImplicitBlackoilEbos;
class StandardWells;
class StandardWellsDense;
/// a simulator for the blackoil model
class SimulatorFullyImplicitBlackoilEbos
@ -44,7 +48,7 @@ public:
typedef BlackoilModelEbos Model;
typedef BlackoilModelParameters ModelParameters;
typedef NonlinearSolver<Model> Solver;
typedef StandardWells WellModel;
typedef StandardWellsDense WellModel;
/// Initialise from parameters and objects to observe.
@ -169,11 +173,11 @@ public:
// -1 means that we'll take the last report step that was written
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
output_writer_.restore( timer,
state,
prev_well_state,
restorefilename,
desiredRestoreStep );
// output_writer_.restore( timer,
// state,
// prev_well_state,
// restorefilename,
// desiredRestoreStep );
}
unsigned int totalLinearizations = 0;

View File

@ -0,0 +1,310 @@
/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#define OPM_STANDARDWELLSDENSE_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <Eigen/Eigen>
#include <Eigen/Sparse>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
namespace Opm {
/// Class for handling the standard well model.
class StandardWellsDense {
public:
struct WellOps {
explicit WellOps(const Wells* wells);
Eigen::SparseMatrix<double> w2p; // well -> perf (scatter)
Eigen::SparseMatrix<double> p2w; // perf -> well (gather)
std::vector<int> well_cells; // the set of perforated cells
};
// --------- Types ---------
using ADB = AutoDiffBlock<double>;
typedef DenseAd::Evaluation<double, /*size=*/6> EvalWell;
//typedef AutoDiffBlock<double> ADB;
using Vector = ADB::V;
using V = ADB::V;
// copied from BlackoilModelBase
// should put to somewhere better
using DataBlock = Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor>;
// --------- Public methods ---------
explicit StandardWellsDense(const Wells* wells_arg);
void init(const BlackoilPropsAdInterface* fluid_arg,
const std::vector<bool>* active_arg,
const std::vector<PhasePresence>* pc_arg,
const VFPProperties* vfp_properties_arg,
const double gravity_arg,
const Vector& depth_arg);
const WellOps& wellOps() const;
int numPhases() const { return wells().number_of_phases; };
template<class WellState>
void resetWellControlFromState(WellState xw) {
const int nw = wells_->number_of_wells;
for (int w = 0; w < nw; ++w) {
WellControls* wc = wells_->ctrls[w];
well_controls_set_current( wc, xw.currentControls()[w]);
}
}
const Wells& wells() const;
const Wells* wellsPointer() const;
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
int numWellVars() const;
/// Density of each well perforation
Vector& wellPerforationDensities(); // mutable version kept for BlackoilMultisegmentModel
const Vector& wellPerforationDensities() const;
/// Diff to bhp for each well perforation.
Vector& wellPerforationPressureDiffs(); // mutable version kept for BlackoilMultisegmentModel
const Vector& wellPerforationPressureDiffs() const;
template <class ReservoirResidualQuant, class SolutionState>
void extractWellPerfProperties(const SolutionState& state,
const std::vector<ReservoirResidualQuant>& rq,
std::vector<ADB>& mob_perfcells,
std::vector<ADB>& b_perfcells) const;
template <class SolutionState>
void computeWellFlux(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
Vector& aliveWells,
std::vector<ADB>& cq_s) const;
template <class SolutionState>
void
computeWellFluxDense(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
std::vector<ADB>& cq_s) const;
EvalWell extractDenseAD(const ADB& data, int i, int j) const;
EvalWell extractDenseADWell(const ADB& data, int i) const;
const ADB convertToADB(const std::vector<EvalWell>& local, const std::vector<int>& well_cells, const int nc, const std::vector<int>& well_id, const int nw, const int numVars) const;
template <class SolutionState, class WellState>
void updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw) const;
template <class WellState>
void updateWellState(const Vector& dwells,
const double dpmaxrel,
WellState& well_state);
template <class WellState>
void updateWellControls(WellState& xw);
// TODO: should LinearisedBlackoilResidual also be a template class?
template <class SolutionState>
void addWellFluxEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
const double dt,
LinearisedBlackoilResidual& residual);
// TODO: some parameters, like gravity, maybe it is better to put in the member list
template <class SolutionState, class WellState>
void addWellControlEq(const SolutionState& state,
const WellState& xw,
const Vector& aliveWells,
LinearisedBlackoilResidual& residual);
template <class SolutionState, class WellState>
void computeWellConnectionPressures(const SolutionState& state,
const WellState& xw);
// state0 is non-constant, while it will not be used outside of the function
template <class SolutionState, class WellState>
void
computeWellPotentials(const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
SolutionState& state0,
WellState& well_state);
template <class SolutionState, class WellState>
void
variableStateExtractWellsVars(const std::vector<int>& indices,
std::vector<ADB>& vars,
SolutionState& state,
WellState& well_state) const;
void
variableStateWellIndices(std::vector<int>& indices,
int& next) const;
std::vector<int>
variableWellStateIndices() const;
template <class WellState>
void
variableWellStateInitials(const WellState& xw,
std::vector<Vector>& vars0) const;
/// If set, computeWellFlux() will additionally store the
/// total reservoir volume perforation fluxes.
void setStoreWellPerforationFluxesFlag(const bool store_fluxes);
/// Retrieves the stored fluxes. It is an error to call this
/// unless setStoreWellPerforationFluxesFlag(true) has been
/// called.
const Vector& getStoredWellPerforationFluxes() const;
/// upate the dynamic lists related to economic limits
template<class WellState>
void
updateListEconLimited(ScheduleConstPtr schedule,
const int current_step,
const Wells* wells,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const;
template <class SolutionState>
std::vector<ADB> wellVolumeFractions(const SolutionState& state) const;
template <class SolutionState>
void computeAccumWells(const SolutionState& state);
template <class WellState>
void computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf,
const std::vector<double>& depth_perf,
const double grav);
protected:
bool wells_active_;
const Wells* wells_;
const WellOps wops_;
const BlackoilPropsAdInterface* fluid_;
const std::vector<bool>* active_;
const std::vector<PhasePresence>* phase_condition_;
const VFPProperties* vfp_properties_;
double gravity_;
// the depth of the all the cell centers
// for standard Wells, it the same with the perforation depth
Vector perf_cell_depth_;
Vector well_perforation_densities_;
Vector well_perforation_pressure_diffs_;
bool store_well_perforation_fluxes_;
Vector well_perforation_fluxes_;
std::vector<ADB> F0_;
// protected methods
template <class SolutionState, class WellState>
void computePropertiesForWellConnectionPressures(const SolutionState& state,
const WellState& xw,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf);
template <class WellState>
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const int well_number) const;
using WellMapType = typename WellState::WellMapType;
using WellMapEntryType = typename WellState::mapentry_t;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
// values should not be used.
// second value indicates whehter there is only one connection left.
// third value indicates the indx of the worst-offending connection.
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
enum ConnectionIndex {
INVALIDCONNECTION = -10000
};
template <class WellState>
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const;
template <class WellState>
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state,
const WellMapEntryType& map_entry) const;
};
} // namespace Opm
#include "StandardWellsDense_impl.hpp"
#endif

File diff suppressed because it is too large Load Diff

View File

@ -24,6 +24,7 @@
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/autodiff/BlackoilModelEnums.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
@ -105,12 +106,67 @@ namespace Opm
well_potentials_.clear();
well_potentials_.resize(nperf * np, 0.0);
well_solutions_.clear();
well_solutions_.resize(nw * np, 0.0);
std::vector<double> g = {1.0,1.0,0.01};
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells->ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = current_controls_[w];
const WellType& well_type = wells->type[w];
switch (well_controls_iget_type(wc, current)) {
case BHP:
{
if (well_type == INJECTOR) {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += wellRates()[np*w + p] * wells->comp_frac[np*w + p];
}
} else {
for (int p = 0; p < np; ++p) {
well_solutions_[w] += g[p] * wellRates()[np*w + p];
}
}
}
break;
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
{
wellSolutions()[w] = bhp()[w];
}
break;
}
assert(np == 3);
double total_rates = 0.0;
for (int p = 0; p < np; ++p) {
total_rates += g[p] * wellRates()[np*w + p];
}
//if(std::abs(total_rates) > 0) {
// wellSolutions()[nw + w] = g[Water] * wellRates()[np*w + Water] / total_rates; //wells->comp_frac[np*w + Water]; // Water;
// wellSolutions()[2*nw + w] = g[Gas] * wellRates()[np*w + Gas] / total_rates ; //wells->comp_frac[np*w + Gas]; //Gas
//} else {
wellSolutions()[nw + w] = wells->comp_frac[np*w + Water];
wellSolutions()[2*nw + w] = wells->comp_frac[np*w + Gas];
//}
}
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
int nw_old = prevState.bhp().size();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
@ -123,11 +179,31 @@ namespace Opm
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
// wellrates
double total_well_rates = 0.0;
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
total_well_rates += prevState.wellRates()[ oldidx ];
}
//if (std::abs(total_well_rates) > 0) {
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
}
// wellSolutions
//if (std::abs(total_well_rates) > 0.0) {
//wellSolutions()[ 0*nw + newIndex ] = prevState.wellSolutions()[0 * nw_old + oldIndex ];
//if (wells->type[w] == PRODUCER) {
for( int i = 0; i < np; ++i)
{
wellSolutions()[ i*nw + newIndex ] = prevState.wellSolutions()[i * nw_old + oldIndex ];
}
//}
//}
// perfPhaseRates
int oldPerf_idx = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
@ -149,6 +225,7 @@ namespace Opm
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
@ -165,6 +242,9 @@ namespace Opm
// If the set of controls have changed, this may not be identical
// to the last control, but it must be a valid control.
currentControls()[ newIndex ] = old_control_index;
WellControls* wc = wells->ctrls[newIndex];
well_controls_set_current( wc, old_control_index);
}
}
@ -191,6 +271,10 @@ namespace Opm
std::vector<double>& wellPotentials() { return well_potentials_; }
const std::vector<double>& wellPotentials() const { return well_potentials_; }
/// One rate per phase and well connection.
std::vector<double>& wellSolutions() { return well_solutions_; }
const std::vector<double>& wellSolutions() const { return well_solutions_; }
data::Wells report() const override {
data::Wells res = WellState::report();
@ -247,10 +331,31 @@ namespace Opm
return res;
}
WellStateFullyImplicitBlackoil() = default;
WellStateFullyImplicitBlackoil( const WellStateFullyImplicitBlackoil& rhs ) :
BaseType(rhs),
perfphaserates_( rhs.perfphaserates_ ),
current_controls_( rhs.current_controls_ ),
well_potentials_( rhs.well_potentials_ ),
well_solutions_( rhs.well_solutions_ )
{}
WellStateFullyImplicitBlackoil& operator=( const WellStateFullyImplicitBlackoil& rhs ) {
BaseType::operator =(rhs);
this->perfPhaseRates() = rhs.perfPhaseRates();
this->currentControls() = rhs.currentControls();
this->wellPotentials() = rhs.wellPotentials();
this->wellSolutions() = rhs.wellSolutions();
return *this;
}
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> well_potentials_;
std::vector<double> well_solutions_;
};
} // namespace Opm