changed: rename ewoms/models/common -> opm/models/common

This commit is contained in:
Arne Morten Kvarving 2019-09-16 12:36:57 +02:00
parent e01f712294
commit 17e8fa6574
10 changed files with 3932 additions and 0 deletions

View File

@ -0,0 +1,569 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* volumetric fluxes out of a pressure potential gradient using the
* Darcy relation.
*/
#ifndef EWOMS_DARCY_FLUX_MODULE_HH
#define EWOMS_DARCY_FLUX_MODULE_HH
#include "multiphasebaseproperties.hh"
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <cmath>
BEGIN_PROPERTIES
NEW_PROP_TAG(MaterialLaw);
END_PROPERTIES
namespace Opm {
template <class TypeTag>
class DarcyIntensiveQuantities;
template <class TypeTag>
class DarcyExtensiveQuantities;
template <class TypeTag>
class DarcyBaseProblem;
/*!
* \ingroup FluxModules
* \brief Specifies a flux module which uses the Darcy relation.
*/
template <class TypeTag>
struct DarcyFluxModule
{
typedef DarcyIntensiveQuantities<TypeTag> FluxIntensiveQuantities;
typedef DarcyExtensiveQuantities<TypeTag> FluxExtensiveQuantities;
typedef DarcyBaseProblem<TypeTag> FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{ }
};
/*!
* \ingroup FluxModules
* \brief Provides the defaults for the parameters required by the
* Darcy velocity approach.
*/
template <class TypeTag>
class DarcyBaseProblem
{ };
/*!
* \ingroup FluxModules
* \brief Provides the intensive quantities for the Darcy flux module
*/
template <class TypeTag>
class DarcyIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \ingroup FluxModules
* \brief Provides the Darcy flux module
*
* The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
* 1\f$. If one encounters flow velocities in porous media above this threshold, the
* Forchheimer approach can be used.
*
* The Darcy equation is given by the following relation:
*
* \f[
\vec{v}_\alpha =
\left( \nabla p_\alpha - \rho_\alpha \vec{g}\right)
\frac{\mu_\alpha}{k_{r,\alpha} K}
\f]
*/
template <class TypeTag>
class DarcyExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef typename Opm::MathToolbox<Evaluation> Toolbox;
typedef typename FluidSystem::template ParameterCache<Evaluation> ParameterCache;
typedef Dune::FieldVector<Evaluation, dimWorld> EvalDimVector;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \brief Returns the intrinsic permeability tensor for a given
* sub-control volume face.
*/
const DimMatrix& intrinsicPermability() const
{ return K_; }
/*!
* \brief Return the pressure potential gradient of a fluid phase
* at the face's integration point [Pa/m]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& potentialGrad(unsigned phaseIdx) const
{ return potentialGrad_[phaseIdx]; }
/*!
* \brief Return the filter velocity of a fluid phase at the
* face's integration point [m/s]
*
* \param phaseIdx The index of the fluid phase
*/
const EvalDimVector& filterVelocity(unsigned phaseIdx) const
{ return filterVelocity_[phaseIdx]; }
/*!
* \brief Return the volume flux of a fluid phase at the face's integration point
* \f$[m^3/s / m^2]\f$
*
* This is the fluid volume of a phase per second and per square meter of face
* area.
*
* \param phaseIdx The index of the fluid phase
*/
const Evaluation& volumeFlux(unsigned phaseIdx) const
{ return volumeFlux_[phaseIdx]; }
protected:
short upstreamIndex_(unsigned phaseIdx) const
{ return upstreamDofIdx_[phaseIdx]; }
short downstreamIndex_(unsigned phaseIdx) const
{ return downstreamDofIdx_[phaseIdx]; }
/*!
* \brief Calculate the gradients which are required to determine the volumetric fluxes
*
* The the upwind directions is also determined by method.
*/
void calculateGradients_(const ElementContext& elemCtx,
unsigned faceIdx,
unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::PressureCallback<TypeTag> pressureCallback(elemCtx);
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
const auto& faceNormal = scvf.normal();
unsigned i = scvf.interiorIndex();
unsigned j = scvf.exteriorIndex();
interiorDofIdx_ = static_cast<short>(i);
exteriorDofIdx_ = static_cast<short>(j);
unsigned focusDofIdx = elemCtx.focusDofIndex();
// calculate the "raw" pressure gradient
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
pressureCallback.setPhaseIndex(phaseIdx);
gradCalc.calculateGradient(potentialGrad_[phaseIdx],
elemCtx,
faceIdx,
pressureCallback);
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
}
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& gEx = elemCtx.problem().gravity(elemCtx, j, timeIdx);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posEx = elemCtx.pos(j, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the centers of the control volumes
DimVector distVecIn(posIn);
DimVector distVecEx(posEx);
DimVector distVecTotal(posEx);
distVecIn -= posFace;
distVecEx -= posFace;
distVecTotal -= posIn;
Scalar absDistTotalSquared = distVecTotal.two_norm2();
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// calculate the hydrostatic pressure at the integration point of the face
Evaluation pStatIn;
if (std::is_same<Scalar, Evaluation>::value ||
interiorDofIdx_ == static_cast<int>(focusDofIdx))
{
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
pStatIn = - rhoIn*(gIn*distVecIn);
}
else {
Scalar rhoIn = Toolbox::value(intQuantsIn.fluidState().density(phaseIdx));
pStatIn = - rhoIn*(gIn*distVecIn);
}
// the quantities on the exterior side of the face do not influence the
// result for the TPFA scheme, so they can be treated as scalar values.
Evaluation pStatEx;
if (std::is_same<Scalar, Evaluation>::value ||
exteriorDofIdx_ == static_cast<int>(focusDofIdx))
{
const Evaluation& rhoEx = intQuantsEx.fluidState().density(phaseIdx);
pStatEx = - rhoEx*(gEx*distVecEx);
}
else {
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
pStatEx = - rhoEx*(gEx*distVecEx);
}
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior
Dune::FieldVector<Evaluation, dimWorld> f(distVecTotal);
f *= (pStatEx - pStatIn)/absDistTotalSquared;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];
for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
if (!Opm::isfinite(potentialGrad_[phaseIdx][dimIdx])) {
throw Opm::NumericalIssue("Non-finite potential gradient for phase '"
+std::string(FluidSystem::phaseName(phaseIdx))+"'");
}
}
}
}
Opm::Valgrind::SetUndefined(K_);
elemCtx.problem().intersectionIntrinsicPermeability(K_, elemCtx, faceIdx, timeIdx);
Opm::Valgrind::CheckDefined(K_);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
// determine the upstream and downstream DOFs
Evaluation tmp = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];
if (tmp > 0) {
upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
}
// we only carry the derivatives along if the upstream DOF is the one which
// we currently focus on
const auto& up = elemCtx.intensiveQuantities(upstreamDofIdx_[phaseIdx], timeIdx);
if (upstreamDofIdx_[phaseIdx] == static_cast<int>(focusDofIdx))
mobility_[phaseIdx] = up.mobility(phaseIdx);
else
mobility_[phaseIdx] = Toolbox::value(up.mobility(phaseIdx));
}
}
/*!
* \brief Calculate the gradients at the grid boundary which are required to
* determine the volumetric fluxes
*
* The the upwind directions is also determined by method.
*/
template <class FluidState>
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::BoundaryPressureCallback<TypeTag, FluidState> pressureCallback(elemCtx, fluidState);
// calculate the pressure gradient
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(potentialGrad_[phaseIdx]);
continue;
}
pressureCallback.setPhaseIndex(phaseIdx);
gradCalc.calculateBoundaryGradient(potentialGrad_[phaseIdx],
elemCtx,
boundaryFaceIdx,
pressureCallback);
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
}
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
auto i = scvf.interiorIndex();
interiorDofIdx_ = static_cast<short>(i);
exteriorDofIdx_ = -1;
int focusDofIdx = elemCtx.focusDofIndex();
// calculate the intrinsic permeability
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
K_ = intQuantsIn.intrinsicPermeability();
// correct the pressure gradients by the gravitational acceleration
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity)) {
// estimate the gravitational acceleration at a given SCV face
// using the arithmetic mean
const auto& gIn = elemCtx.problem().gravity(elemCtx, i, timeIdx);
const auto& posIn = elemCtx.pos(i, timeIdx);
const auto& posFace = scvf.integrationPos();
// the distance between the face center and the center of the control volume
DimVector distVecIn(posIn);
distVecIn -= posFace;
Scalar absDist = distVecIn.two_norm();
Scalar gTimesDist = gIn*distVecIn;
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// calculate the hydrostatic pressure at the integration point of the face
Evaluation rhoIn = intQuantsIn.fluidState().density(phaseIdx);
Evaluation pStatIn = - gTimesDist*rhoIn;
Opm::Valgrind::CheckDefined(pStatIn);
// compute the hydrostatic gradient between the two control volumes (this
// gradient exhibitis the same direction as the vector between the two
// control volume centers and the length (pStaticExterior -
// pStaticInterior)/distanceInteriorToExterior. Note that for the
// boundary, 'pStaticExterior' is zero as the boundary pressure is
// defined on boundary face's integration point...
EvalDimVector f(distVecIn);
f *= - pStatIn/absDist;
// calculate the final potential gradient
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
potentialGrad_[phaseIdx][dimIdx] += f[dimIdx];
Opm::Valgrind::CheckDefined(potentialGrad_[phaseIdx]);
for (unsigned dimIdx = 0; dimIdx < potentialGrad_[phaseIdx].size(); ++dimIdx) {
if (!Opm::isfinite(potentialGrad_[phaseIdx][dimIdx])) {
throw Opm::NumericalIssue("Non finite potential gradient for phase '"
+std::string(FluidSystem::phaseName(phaseIdx))+"'");
}
}
}
}
// determine the upstream and downstream DOFs
const auto& faceNormal = scvf.normal();
const auto& matParams = elemCtx.problem().materialLawParams(elemCtx, i, timeIdx);
Scalar kr[numPhases];
MaterialLaw::relativePermeabilities(kr, matParams, fluidState);
Opm::Valgrind::CheckDefined(kr);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
Evaluation tmp = 0.0;
for (unsigned dimIdx = 0; dimIdx < faceNormal.size(); ++dimIdx)
tmp += potentialGrad_[phaseIdx][dimIdx]*faceNormal[dimIdx];
if (tmp > 0) {
upstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
downstreamDofIdx_[phaseIdx] = interiorDofIdx_;
}
else {
upstreamDofIdx_[phaseIdx] = interiorDofIdx_;
downstreamDofIdx_[phaseIdx] = exteriorDofIdx_;
}
// take the phase mobility from the DOF in upstream direction
if (upstreamDofIdx_[phaseIdx] < 0) {
if (interiorDofIdx_ == focusDofIdx)
mobility_[phaseIdx] =
kr[phaseIdx] / fluidState.viscosity(phaseIdx);
else
mobility_[phaseIdx] =
Toolbox::value(kr[phaseIdx])
/ Toolbox::value(fluidState.viscosity(phaseIdx));
}
else if (upstreamDofIdx_[phaseIdx] != focusDofIdx)
mobility_[phaseIdx] = Toolbox::value(intQuantsIn.mobility(phaseIdx));
else
mobility_[phaseIdx] = intQuantsIn.mobility(phaseIdx);
Opm::Valgrind::CheckDefined(mobility_[phaseIdx]);
}
}
/*!
* \brief Calculate the volumetric fluxes of all phases
*
* The pressure potentials and upwind directions must already be
* determined before calling this method!
*/
void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
const DimVector& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
filterVelocity_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
asImp_().calculateFilterVelocity_(phaseIdx);
Opm::Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
volumeFlux_[phaseIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
}
}
/*!
* \brief Calculate the volumetric fluxes at a boundary face of all fluid phases
*
* The pressure potentials and upwind directions must already be determined before
* calling this method!
*/
void calculateBoundaryFluxes_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx)
{
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(boundaryFaceIdx);
const DimVector& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
filterVelocity_[phaseIdx] = 0.0;
volumeFlux_[phaseIdx] = 0.0;
continue;
}
asImp_().calculateFilterVelocity_(phaseIdx);
Opm::Valgrind::CheckDefined(filterVelocity_[phaseIdx]);
volumeFlux_[phaseIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
volumeFlux_[phaseIdx] += filterVelocity_[phaseIdx][i] * normal[i];
}
}
void calculateFilterVelocity_(unsigned phaseIdx)
{
#ifndef NDEBUG
assert(Opm::isfinite(mobility_[phaseIdx]));
for (unsigned i = 0; i < K_.M(); ++ i)
for (unsigned j = 0; j < K_.N(); ++ j)
assert(std::isfinite(K_[i][j]));
#endif
K_.mv(potentialGrad_[phaseIdx], filterVelocity_[phaseIdx]);
filterVelocity_[phaseIdx] *= - mobility_[phaseIdx];
#ifndef NDEBUG
for (unsigned i = 0; i < filterVelocity_[phaseIdx].size(); ++ i)
assert(Opm::isfinite(filterVelocity_[phaseIdx][i]));
#endif
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation*>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation*>(this); }
protected:
// intrinsic permeability tensor and its square root
DimMatrix K_;
// mobilities of all fluid phases [1 / (Pa s)]
Evaluation mobility_[numPhases];
// filter velocities of all phases [m/s]
EvalDimVector filterVelocity_[numPhases];
// the volumetric flux of all fluid phases over the control
// volume's face [m^3/s / m^2]
Evaluation volumeFlux_[numPhases];
// pressure potential gradients of all phases [Pa / m]
EvalDimVector potentialGrad_[numPhases];
// upstream, downstream, interior and exterior DOFs
short upstreamDofIdx_[numPhases];
short downstreamDofIdx_[numPhases];
short interiorDofIdx_;
short exteriorDofIdx_;
};
} // namespace Opm
#endif

View File

@ -0,0 +1,496 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Classes required for molecular diffusion.
*/
#ifndef EWOMS_DIFFUSION_MODULE_HH
#define EWOMS_DIFFUSION_MODULE_HH
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
BEGIN_PROPERTIES
NEW_PROP_TAG(Indices);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup Diffusion
* \class Opm::DiffusionModule
* \brief Provides the auxiliary methods required for consideration of the
* diffusion equation.
*/
template <class TypeTag, bool enableDiffusion>
class DiffusionModule;
/*!
* \copydoc Opm::DiffusionModule
*/
template <class TypeTag>
class DiffusionModule<TypeTag, /*enableDiffusion=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
public:
/*!
* \brief Register all run-time parameters for the diffusion module.
*/
static void registerParameters()
{}
/*!
* \brief Adds the diffusive mass flux flux to the flux vector over a flux
* integration point.
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
};
/*!
* \copydoc Opm::DiffusionModule
*/
template <class TypeTag>
class DiffusionModule<TypeTag, /*enableDiffusion=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { conti0EqIdx = Indices::conti0EqIdx };
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \brief Register all run-time parameters for the diffusion module.
*/
static void registerParameters()
{}
/*!
* \brief Adds the mass flux due to molecular diffusion to the flux vector over the
* flux integration point.
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux, const Context& context,
unsigned spaceIdx, unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
const auto& fluidStateI = context.intensiveQuantities(extQuants.interiorIndex(), timeIdx).fluidState();
const auto& fluidStateJ = context.intensiveQuantities(extQuants.exteriorIndex(), timeIdx).fluidState();
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
// arithmetic mean of the phase's molar density
Evaluation rhoMolar = fluidStateI.molarDensity(phaseIdx);
rhoMolar += Toolbox::value(fluidStateJ.molarDensity(phaseIdx));
rhoMolar /= 2;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
// mass flux due to molecular diffusion
flux[conti0EqIdx + compIdx] +=
-rhoMolar
* extQuants.moleFractionGradientNormal(phaseIdx, compIdx)
* extQuants.effectiveDiffusionCoefficient(phaseIdx, compIdx);
}
}
};
/*!
* \ingroup Diffusion
* \class Opm::DiffusionIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the
* calculation of molecular diffusive fluxes.
*/
template <class TypeTag, bool enableDiffusion>
class DiffusionIntensiveQuantities;
/*!
* \copydoc Opm::DiffusionIntensiveQuantities
*/
template <class TypeTag>
class DiffusionIntensiveQuantities<TypeTag, /*enableDiffusion=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
/*!
* \brief Returns the tortuousity of the sub-domain of a fluid
* phase in the porous medium.
*/
Scalar tortuosity(unsigned phaseIdx OPM_UNUSED) const
{
throw std::logic_error("Method tortuosity() does not make sense "
"if diffusion is disabled");
}
/*!
* \brief Returns the molecular diffusion coefficient for a
* component in a phase.
*/
Scalar diffusionCoefficient(unsigned phaseIdx OPM_UNUSED, unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("Method diffusionCoefficient() does not "
"make sense if diffusion is disabled");
}
/*!
* \brief Returns the effective molecular diffusion coefficient of
* the porous medium for a component in a phase.
*/
Scalar effectiveDiffusionCoefficient(unsigned phaseIdx OPM_UNUSED, unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("Method effectiveDiffusionCoefficient() "
"does not make sense if diffusion is disabled");
}
protected:
/*!
* \brief Update the quantities required to calculate diffusive
* mass fluxes.
*/
template <class FluidState>
void update_(FluidState& fs OPM_UNUSED,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache OPM_UNUSED,
const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \copydoc Opm::DiffusionIntensiveQuantities
*/
template <class TypeTag>
class DiffusionIntensiveQuantities<TypeTag, /*enableDiffusion=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
public:
/*!
* \brief Returns the molecular diffusion coefficient for a
* component in a phase.
*/
Evaluation diffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
{ return diffusionCoefficient_[phaseIdx][compIdx]; }
/*!
* \brief Returns the tortuousity of the sub-domain of a fluid
* phase in the porous medium.
*/
Evaluation tortuosity(unsigned phaseIdx) const
{ return tortuosity_[phaseIdx]; }
/*!
* \brief Returns the effective molecular diffusion coefficient of
* the porous medium for a component in a phase.
*/
Evaluation effectiveDiffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
{ return tortuosity_[phaseIdx] * diffusionCoefficient_[phaseIdx][compIdx]; }
protected:
/*!
* \brief Update the quantities required to calculate diffusive
* mass fluxes.
*/
template <class FluidState>
void update_(FluidState& fluidState,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
typedef Opm::MathToolbox<Evaluation> Toolbox;
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
// TODO: let the problem do this (this is a constitutive
// relation of which the model should be free of from the
// abstraction POV!)
const Evaluation& base =
Toolbox::max(0.0001,
intQuants.porosity()
* intQuants.fluidState().saturation(phaseIdx));
tortuosity_[phaseIdx] =
1.0 / (intQuants.porosity() * intQuants.porosity())
* Toolbox::pow(base, 7.0/3.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
diffusionCoefficient_[phaseIdx][compIdx] =
FluidSystem::diffusionCoefficient(fluidState,
paramCache,
phaseIdx,
compIdx);
}
}
}
private:
Evaluation tortuosity_[numPhases];
Evaluation diffusionCoefficient_[numPhases][numComponents];
};
/*!
* \ingroup Diffusion
* \class Opm::DiffusionExtensiveQuantities
*
* \brief Provides the quantities required to calculate diffusive mass fluxes.
*/
template <class TypeTag, bool enableDiffusion>
class DiffusionExtensiveQuantities;
/*!
* \copydoc Opm::DiffusionExtensiveQuantities
*/
template <class TypeTag>
class DiffusionExtensiveQuantities<TypeTag, /*enableDiffusion=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
/*!
* \brief Update the quantities required to calculate
* the diffusive mass fluxes.
*/
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned faceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context& context OPM_UNUSED,
unsigned bfIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED,
const FluidState& fluidState OPM_UNUSED)
{}
public:
/*!
* \brief The the gradient of the mole fraction times the face normal.
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& moleFractionGradientNormal(unsigned phaseIdx OPM_UNUSED,
unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("The method moleFractionGradient() does not "
"make sense if diffusion is disabled.");
}
/*!
* \brief The effective diffusion coeffcient of a component in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& effectiveDiffusionCoefficient(unsigned phaseIdx OPM_UNUSED,
unsigned compIdx OPM_UNUSED) const
{
throw std::logic_error("The method effectiveDiffusionCoefficient() "
"does not make sense if diffusion is disabled.");
}
};
/*!
* \copydoc Opm::DiffusionExtensiveQuantities
*/
template <class TypeTag>
class DiffusionExtensiveQuantities<TypeTag, /*enableDiffusion=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = GET_PROP_VALUE(TypeTag, NumComponents) };
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldVector<Evaluation, dimWorld> DimEvalVector;
protected:
/*!
* \brief Update the quantities required to calculate
* the diffusive mass fluxes.
*/
void update_(const ElementContext& elemCtx, unsigned faceIdx, unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::MoleFractionCallback<TypeTag> moleFractionCallback(elemCtx);
const auto& face = elemCtx.stencil(timeIdx).interiorFace(faceIdx);
const auto& normal = face.normal();
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, timeIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(extQuants.interiorIndex(), timeIdx);
const auto& intQuantsOutside = elemCtx.intensiveQuantities(extQuants.exteriorIndex(), timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
moleFractionCallback.setPhaseIndex(phaseIdx);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
moleFractionCallback.setComponentIndex(compIdx);
DimEvalVector moleFractionGradient(0.0);
gradCalc.calculateGradient(moleFractionGradient,
elemCtx,
faceIdx,
moleFractionCallback);
moleFractionGradientNormal_[phaseIdx][compIdx] = 0.0;
for (unsigned i = 0; i < normal.size(); ++i)
moleFractionGradientNormal_[phaseIdx][compIdx] +=
normal[i]*moleFractionGradient[i];
Opm::Valgrind::CheckDefined(moleFractionGradientNormal_[phaseIdx][compIdx]);
// use the arithmetic average for the effective
// diffusion coefficients.
effectiveDiffusionCoefficient_[phaseIdx][compIdx] =
(intQuantsInside.effectiveDiffusionCoefficient(phaseIdx, compIdx)
+
intQuantsOutside.effectiveDiffusionCoefficient(phaseIdx, compIdx))
/ 2;
Opm::Valgrind::CheckDefined(effectiveDiffusionCoefficient_[phaseIdx][compIdx]);
}
}
}
template <class Context, class FluidState>
void updateBoundary_(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
const auto& stencil = context.stencil(timeIdx);
const auto& face = stencil.boundaryFace(bfIdx);
const auto& elemCtx = context.elementContext();
unsigned insideScvIdx = face.interiorIndex();
const auto& insideScv = stencil.subControlVolume(insideScvIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(insideScvIdx, timeIdx);
const auto& fluidStateInside = intQuantsInside.fluidState();
// distance between the center of the SCV and center of the boundary face
DimVector distVec = face.integrationPos();
distVec -= context.element().geometry().global(insideScv.localGeometry().center());
Scalar dist = distVec * face.normal();
// if the following assertation triggers, the center of the
// center of the interior SCV was not inside the element!
assert(dist > 0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
// calculate mole fraction gradient using two-point
// gradients
moleFractionGradientNormal_[phaseIdx][compIdx] =
(fluidState.moleFraction(phaseIdx, compIdx)
-
fluidStateInside.moleFraction(phaseIdx, compIdx))
/ dist;
Opm::Valgrind::CheckDefined(moleFractionGradientNormal_[phaseIdx][compIdx]);
// use effective diffusion coefficients of the interior finite
// volume.
effectiveDiffusionCoefficient_[phaseIdx][compIdx] =
intQuantsInside.effectiveDiffusionCoefficient(phaseIdx, compIdx);
Opm::Valgrind::CheckDefined(effectiveDiffusionCoefficient_[phaseIdx][compIdx]);
}
}
}
public:
/*!
* \brief The the gradient of the mole fraction times the face normal.
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& moleFractionGradientNormal(unsigned phaseIdx, unsigned compIdx) const
{ return moleFractionGradientNormal_[phaseIdx][compIdx]; }
/*!
* \brief The effective diffusion coeffcient of a component in a
* fluid phase at the face's integration point
*
* \copydoc Doxygen::phaseIdxParam
* \copydoc Doxygen::compIdxParam
*/
const Evaluation& effectiveDiffusionCoefficient(unsigned phaseIdx, unsigned compIdx) const
{ return effectiveDiffusionCoefficient_[phaseIdx][compIdx]; }
private:
Evaluation moleFractionGradientNormal_[numPhases][numComponents];
Evaluation effectiveDiffusionCoefficient_[numPhases][numComponents];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,859 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief Contains the classes required to consider energy as a
* conservation quantity in a multi-phase module.
*/
#ifndef EWOMS_ENERGY_MODULE_HH
#define EWOMS_ENERGY_MODULE_HH
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <opm/models/common/quantitycallbacks.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <string>
BEGIN_PROPERTIES
NEW_PROP_TAG(Indices);
NEW_PROP_TAG(EnableEnergy);
NEW_PROP_TAG(ThermalConductionLaw);
NEW_PROP_TAG(ThermalConductionLawParams);
NEW_PROP_TAG(SolidEnergyLaw);
NEW_PROP_TAG(SolidEnergyLawParams);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup Energy
* \brief Provides the auxiliary methods required for consideration of
* the energy equation.
*/
template <class TypeTag, bool enableEnergy>
class EnergyModule;
/*!
* \copydoc Opm::EnergyModule
*/
template <class TypeTag>
class EnergyModule<TypeTag, /*enableEnergy=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
public:
/*!
* \brief Register all run-time parameters for the energy module.
*/
static void registerParameters()
{}
/*!
* \brief Returns the name of a primary variable or an empty
* string if the specified primary variable index does not belong to
* the energy module.
*/
static std::string primaryVarName(unsigned pvIdx OPM_UNUSED)
{ return ""; }
/*!
* \brief Returns the name of an equation or an empty
* string if the specified equation index does not belong to
* the energy module.
*/
static std::string eqName(unsigned eqIdx OPM_UNUSED)
{ return ""; }
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*/
static Scalar primaryVarWeight(const Model& model OPM_UNUSED,
unsigned globalDofIdx OPM_UNUSED,
unsigned pvIdx OPM_UNUSED)
{ return -1; }
/*!
* \brief Returns the relative weight of a equation of the residual.
*/
static Scalar eqWeight(const Model& model OPM_UNUSED,
unsigned globalDofIdx OPM_UNUSED,
unsigned eqIdx OPM_UNUSED)
{ return -1; }
/*!
* \brief Given a fluid state, set the temperature in the primary variables
*/
template <class FluidState>
static void setPriVarTemperatures(PrimaryVariables& priVars OPM_UNUSED,
const FluidState& fs OPM_UNUSED)
{}
/*!
* \brief Given a fluid state, set the enthalpy rate which emerges
* from a volumetric rate.
*/
template <class RateVector, class FluidState>
static void setEnthalpyRate(RateVector& rateVec OPM_UNUSED,
const FluidState& fluidState OPM_UNUSED,
unsigned phaseIdx OPM_UNUSED,
const Evaluation& volume OPM_UNUSED)
{}
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void setEnthalpyRate(RateVector& rateVec OPM_UNUSED,
const Evaluation& rate OPM_UNUSED)
{}
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void addToEnthalpyRate(RateVector& rateVec OPM_UNUSED,
const Evaluation& rate OPM_UNUSED)
{}
/*!
* \brief Add the rate of the conductive energy flux to a rate vector.
*/
static Scalar thermalConductionRate(const ExtensiveQuantities& extQuants OPM_UNUSED)
{ return 0.0; }
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage OPM_UNUSED,
const IntensiveQuantities& intQuants OPM_UNUSED,
unsigned phaseIdx OPM_UNUSED)
{}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval, class Scv>
static void addFracturePhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage OPM_UNUSED,
const IntensiveQuantities& intQuants OPM_UNUSED,
const Scv& scv OPM_UNUSED,
unsigned phaseIdx OPM_UNUSED)
{}
/*!
* \brief Add the energy storage term for the fracture part a fluid phase to an
* equation vector
*/
template <class LhsEval>
static void addSolidEnergyStorage(Dune::FieldVector<LhsEval, numEq>& storage OPM_UNUSED,
const IntensiveQuantities& intQuants OPM_UNUSED)
{}
/*!
* \brief Evaluates the advective energy fluxes over a face of a
* subcontrol volume and adds the result in the flux vector.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addAdvectiveFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
/*!
* \brief Evaluates the advective energy fluxes over a fracture
* which should be attributed to a face of a subcontrol
* volume and adds the result in the flux vector.
*/
template <class Context>
static void handleFractureFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
/*!
* \brief Adds the diffusive energy flux to the flux vector over the face of a
* sub-control volume.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux OPM_UNUSED,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
};
/*!
* \copydoc Opm::EnergyModule
*/
template <class TypeTag>
class EnergyModule<TypeTag, /*enableEnergy=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) ExtensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
enum { numPhases = FluidSystem::numPhases };
enum { energyEqIdx = Indices::energyEqIdx };
enum { temperatureIdx = Indices::temperatureIdx };
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \brief Register all run-time parameters for the energy module.
*/
static void registerParameters()
{}
/*!
* \brief Returns the name of a primary variable or an empty
* string if the specified primary variable index does not belong to
* the energy module.
*/
static std::string primaryVarName(unsigned pvIdx)
{
if (pvIdx == temperatureIdx)
return "temperature";
return "";
}
/*!
* \brief Returns the name of an equation or an empty
* string if the specified equation index does not belong to
* the energy module.
*/
static std::string eqName(unsigned eqIdx)
{
if (eqIdx == energyEqIdx)
return "energy";
return "";
}
/*!
* \brief Returns the relative weight of a primary variable for
* calculating relative errors.
*/
static Scalar primaryVarWeight(const Model& model, unsigned globalDofIdx, unsigned pvIdx)
{
if (pvIdx != temperatureIdx)
return -1;
// make the weight of the temperature primary variable inversly proportional to its value
return std::max(1.0/1000, 1.0/model.solution(/*timeIdx=*/0)[globalDofIdx][temperatureIdx]);
}
/*!
* \brief Returns the relative weight of a equation.
*/
static Scalar eqWeight(const Model& model OPM_UNUSED,
unsigned globalDofIdx OPM_UNUSED,
unsigned eqIdx)
{
if (eqIdx != energyEqIdx)
return -1;
// approximate change of internal energy of 1kg of liquid water for a temperature
// change of 30K
return 1.0 / (4.184e3 * 30.0);
}
/*!
* \brief Set the rate of energy flux of a rate vector.
*/
static void setEnthalpyRate(RateVector& rateVec, const Evaluation& rate)
{ rateVec[energyEqIdx] = rate; }
/*!
* \brief Add the rate of the enthalpy flux to a rate vector.
*/
static void addToEnthalpyRate(RateVector& rateVec, const Evaluation& rate)
{ rateVec[energyEqIdx] += rate; }
/*!
* \brief Returns the conductive energy flux for a given flux integration point.
*/
static Evaluation thermalConductionRate(const ExtensiveQuantities& extQuants)
{ return -extQuants.temperatureGradNormal() * extQuants.thermalConductivity(); }
/*!
* \brief Given a fluid state, set the enthalpy rate which emerges
* from a volumetric rate.
*/
template <class RateVector, class FluidState>
static void setEnthalpyRate(RateVector& rateVec,
const FluidState& fluidState,
unsigned phaseIdx,
const Evaluation& volume)
{
rateVec[energyEqIdx] =
volume
* fluidState.density(phaseIdx)
* fluidState.enthalpy(phaseIdx);
}
/*!
* \brief Given a fluid state, set the temperature in the primary variables
*/
template <class FluidState>
static void setPriVarTemperatures(PrimaryVariables& priVars,
const FluidState& fs)
{
priVars[temperatureIdx] = Toolbox::value(fs.temperature(/*phaseIdx=*/0));
#ifndef NDEBUG
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
assert(std::abs(Toolbox::value(fs.temperature(/*phaseIdx=*/0))
- Toolbox::value(fs.temperature(phaseIdx))) < 1e-30);
}
#endif
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addPhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants,
unsigned phaseIdx)
{
const auto& fs = intQuants.fluidState();
storage[energyEqIdx] +=
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.internalEnergy(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.porosity());
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class Scv, class LhsEval>
static void addFracturePhaseStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants,
const Scv& scv,
unsigned phaseIdx)
{
const auto& fs = intQuants.fractureFluidState();
storage[energyEqIdx] +=
Toolbox::template decay<LhsEval>(fs.density(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.internalEnergy(phaseIdx))
* Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
* Toolbox::template decay<LhsEval>(intQuants.fracturePorosity())
* Toolbox::template decay<LhsEval>(intQuants.fractureVolume())/scv.volume();
}
/*!
* \brief Add the energy storage term for a fluid phase to an equation
* vector
*/
template <class LhsEval>
static void addSolidEnergyStorage(Dune::FieldVector<LhsEval, numEq>& storage,
const IntensiveQuantities& intQuants)
{ storage[energyEqIdx] += Opm::decay<LhsEval>(intQuants.solidInternalEnergy()); }
/*!
* \brief Evaluates the advective energy fluxes for a flux integration point and adds
* the result in the flux vector.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addAdvectiveFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// advective energy flux in all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!context.model().phaseIsConsidered(phaseIdx))
continue;
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = context.intensiveQuantities(upIdx, timeIdx);
flux[energyEqIdx] +=
extQuants.volumeFlux(phaseIdx)
* up.fluidState().enthalpy(phaseIdx)
* up.fluidState().density(phaseIdx);
}
}
/*!
* \brief Evaluates the advective energy fluxes over a fracture which should be
* attributed to a face of a subcontrol volume and adds the result in the flux
* vector.
*/
template <class Context>
static void handleFractureFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& scvf = context.stencil(timeIdx).interiorFace(spaceIdx);
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// reduce the energy flux in the matrix by the half the width occupied by the
// fracture
flux[energyEqIdx] *=
1 - extQuants.fractureWidth()/(2*scvf.area());
// advective energy flux in all phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!context.model().phaseIsConsidered(phaseIdx))
continue;
// intensive quantities of the upstream and the downstream DOFs
unsigned upIdx = static_cast<unsigned>(extQuants.upstreamIndex(phaseIdx));
const IntensiveQuantities& up = context.intensiveQuantities(upIdx, timeIdx);
flux[energyEqIdx] +=
extQuants.fractureVolumeFlux(phaseIdx)
* up.fluidState().enthalpy(phaseIdx)
* up.fluidState().density(phaseIdx);
}
}
/*!
* \brief Adds the diffusive energy flux to the flux vector over the face of a
* sub-control volume.
*
* This method is called by compute flux (base class)
*/
template <class Context>
static void addDiffusiveFlux(RateVector& flux,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& extQuants = context.extensiveQuantities(spaceIdx, timeIdx);
// diffusive energy flux
flux[energyEqIdx] +=
- extQuants.temperatureGradNormal()
* extQuants.thermalConductivity();
}
};
/*!
* \ingroup Energy
* \class Opm::EnergyIndices
*
* \brief Provides the indices required for the energy equation.
*/
template <unsigned PVOffset, bool enableEnergy>
struct EnergyIndices;
/*!
* \copydoc Opm::EnergyIndices
*/
template <unsigned PVOffset>
struct EnergyIndices<PVOffset, /*enableEnergy=*/false>
{
//! The index of the primary variable representing temperature
enum { temperatureIdx = -1000 };
//! The index of the equation representing the conservation of energy
enum { energyEqIdx = -1000 };
protected:
enum { numEq_ = 0 };
};
/*!
* \copydoc Opm::EnergyIndices
*/
template <unsigned PVOffset>
struct EnergyIndices<PVOffset, /*enableEnergy=*/true>
{
//! The index of the primary variable representing temperature
enum { temperatureIdx = PVOffset };
//! The index of the equation representing the conservation of energy
enum { energyEqIdx = PVOffset };
protected:
enum { numEq_ = 1 };
};
/*!
* \ingroup Energy
* \class Opm::EnergyIntensiveQuantities
*
* \brief Provides the volumetric quantities required for the energy equation.
*/
template <class TypeTag, bool enableEnergy>
class EnergyIntensiveQuantities;
/*!
* \copydoc Opm::EnergyIntensiveQuantities
*/
template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, /*enableEnergy=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::MathToolbox<Evaluation> Toolbox;
public:
/*!
* \brief Returns the volumetric internal energy \f$\mathrm{[J/(m^3]}\f$ of the
* solid matrix in the sub-control volume.
*/
Evaluation solidInternalEnergy() const
{
throw std::logic_error("solidInternalEnergy() does not make sense for isothermal models");
}
/*!
* \brief Returns the total thermal conductivity \f$\mathrm{[W/m^2 / (K/m)]}\f$ of
* the solid matrix in the sub-control volume.
*/
Evaluation thermalConductivity() const
{
throw std::logic_error("thermalConductivity() does not make sense for isothermal models");
}
protected:
/*!
* \brief Update the temperatures of the fluids of a fluid state.
*/
template <class FluidState, class Context>
static void updateTemperatures_(FluidState& fluidState,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
Scalar T = context.problem().temperature(context, spaceIdx, timeIdx);
fluidState.setTemperature(Toolbox::createConstant(T));
}
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
template <class FluidState>
void update_(FluidState& fs OPM_UNUSED,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache OPM_UNUSED,
const ElementContext& elemCtx OPM_UNUSED,
unsigned dofIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{ }
};
/*!
* \copydoc Opm::EnergyIntensiveQuantities
*/
template <class TypeTag>
class EnergyIntensiveQuantities<TypeTag, /*enableEnergy=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLaw) ThermalConductionLaw;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLaw) SolidEnergyLaw;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum { numPhases = FluidSystem::numPhases };
enum { energyEqIdx = Indices::energyEqIdx };
enum { temperatureIdx = Indices::temperatureIdx };
typedef Opm::MathToolbox<Evaluation> Toolbox;
protected:
/*!
* \brief Update the temperatures of the fluids of a fluid state.
*/
template <class FluidState, class Context>
static void updateTemperatures_(FluidState& fluidState,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx)
{
const auto& priVars = context.primaryVars(spaceIdx, timeIdx);
Evaluation val;
if (std::is_same<Evaluation, Scalar>::value) // finite differences
val = Toolbox::createConstant(priVars[temperatureIdx]);
else {
// automatic differentiation
if (timeIdx == 0)
val = Toolbox::createVariable(priVars[temperatureIdx], temperatureIdx);
else
val = Toolbox::createConstant(priVars[temperatureIdx]);
}
fluidState.setTemperature(val);
}
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
template <class FluidState>
void update_(FluidState& fs,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
const ElementContext& elemCtx,
unsigned dofIdx,
unsigned timeIdx)
{
// set the specific enthalpies of the fluids
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
fs.setEnthalpy(phaseIdx,
FluidSystem::enthalpy(fs, paramCache, phaseIdx));
}
// compute and set the volumetric internal energy of the solid phase
const auto& problem = elemCtx.problem();
const auto& solidEnergyParams = problem.solidEnergyLawParams(elemCtx, dofIdx, timeIdx);
const auto& thermalCondParams = problem.thermalConductionLawParams(elemCtx, dofIdx, timeIdx);
solidInternalEnergy_ = SolidEnergyLaw::solidInternalEnergy(solidEnergyParams, fs);
thermalConductivity_ = ThermalConductionLaw::thermalConductivity(thermalCondParams, fs);
Opm::Valgrind::CheckDefined(solidInternalEnergy_);
Opm::Valgrind::CheckDefined(thermalConductivity_);
}
public:
/*!
* \brief Returns the volumetric internal energy \f$\mathrm{[J/m^3]}\f$ of the
* solid matrix in the sub-control volume.
*/
const Evaluation& solidInternalEnergy() const
{ return solidInternalEnergy_; }
/*!
* \brief Returns the total conductivity capacity \f$\mathrm{[W/m^2 / (K/m)]}\f$ of
* the solid matrix in the sub-control volume.
*/
const Evaluation& thermalConductivity() const
{ return thermalConductivity_; }
private:
Evaluation solidInternalEnergy_;
Evaluation thermalConductivity_;
};
/*!
* \ingroup Energy
* \class Opm::EnergyExtensiveQuantities
*
* \brief Provides the quantities required to calculate energy fluxes.
*/
template <class TypeTag, bool enableEnergy>
class EnergyExtensiveQuantities;
/*!
* \copydoc Opm::EnergyExtensiveQuantities
*/
template <class TypeTag>
class EnergyExtensiveQuantities<TypeTag, /*enableEnergy=*/false>
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
protected:
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
void update_(const ElementContext& elemCtx OPM_UNUSED,
unsigned faceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED)
{}
template <class Context, class FluidState>
void updateBoundary_(const Context& context OPM_UNUSED,
unsigned bfIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED,
const FluidState& fs OPM_UNUSED)
{}
public:
/*!
* \brief The temperature gradient times the face normal [K m^2 / m]
*/
Scalar temperatureGradNormal() const
{
throw std::logic_error("Calling temperatureGradNormal() does not make sense "
"for isothermal models");
}
/*!
* \brief The total thermal conductivity at the face \f$\mathrm{[W/m^2 / (K/m)]}\f$
*/
Scalar thermalConductivity() const
{
throw std::logic_error("Calling thermalConductivity() does not make sense for "
"isothermal models");
}
};
/*!
* \copydoc Opm::EnergyExtensiveQuantities
*/
template <class TypeTag>
class EnergyExtensiveQuantities<TypeTag, /*enableEnergy=*/true>
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
enum { dimWorld = GridView::dimensionworld };
typedef Dune::FieldVector<Evaluation, dimWorld> EvalDimVector;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
protected:
/*!
* \brief Update the quantities required to calculate
* energy fluxes.
*/
void update_(const ElementContext& elemCtx, unsigned faceIdx, unsigned timeIdx)
{
const auto& gradCalc = elemCtx.gradientCalculator();
Opm::TemperatureCallback<TypeTag> temperatureCallback(elemCtx);
EvalDimVector temperatureGrad;
gradCalc.calculateGradient(temperatureGrad,
elemCtx,
faceIdx,
temperatureCallback);
// scalar product of temperature gradient and scvf normal
const auto& face = elemCtx.stencil(/*timeIdx=*/0).interiorFace(faceIdx);
temperatureGradNormal_ = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
temperatureGradNormal_ += (face.normal()[dimIdx]*temperatureGrad[dimIdx]);
const auto& extQuants = elemCtx.extensiveQuantities(faceIdx, timeIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(extQuants.interiorIndex(), timeIdx);
const auto& intQuantsOutside = elemCtx.intensiveQuantities(extQuants.exteriorIndex(), timeIdx);
// arithmetic mean
thermalConductivity_ =
0.5 * (intQuantsInside.thermalConductivity() + intQuantsOutside.thermalConductivity());
Opm::Valgrind::CheckDefined(thermalConductivity_);
}
template <class Context, class FluidState>
void updateBoundary_(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fs)
{
const auto& stencil = context.stencil(timeIdx);
const auto& face = stencil.boundaryFace(bfIdx);
const auto& elemCtx = context.elementContext();
unsigned insideScvIdx = face.interiorIndex();
const auto& insideScv = elemCtx.stencil(timeIdx).subControlVolume(insideScvIdx);
const auto& intQuantsInside = elemCtx.intensiveQuantities(insideScvIdx, timeIdx);
const auto& fsInside = intQuantsInside.fluidState();
// distance between the center of the SCV and center of the boundary face
DimVector distVec = face.integrationPos();
distVec -= insideScv.geometry().center();
Scalar tmp = 0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
tmp += distVec[dimIdx] * face.normal()[dimIdx];
Scalar dist = tmp;
// if the following assertation triggers, the center of the
// center of the interior SCV was not inside the element!
assert(dist > 0);
// calculate the temperature gradient using two-point gradient
// appoximation
temperatureGradNormal_ =
(fs.temperature(/*phaseIdx=*/0) - fsInside.temperature(/*phaseIdx=*/0)) / dist;
// take the value for thermal conductivity from the interior finite volume
thermalConductivity_ = intQuantsInside.thermalConductivity();
}
public:
/*!
* \brief The temperature gradient times the face normal [K m^2 / m]
*/
const Evaluation& temperatureGradNormal() const
{ return temperatureGradNormal_; }
/*!
* \brief The total thermal conductivity at the face \f$\mathrm{[W/m^2 /
* (K/m)]}\f$
*/
const Evaluation& thermalConductivity() const
{ return thermalConductivity_; }
private:
Evaluation temperatureGradNormal_;
Evaluation thermalConductivity_;
};
} // namespace Opm
#endif

35
opm/models/common/flux.hh Normal file
View File

@ -0,0 +1,35 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* velocity out of a pressure potential gradient.
*/
#ifndef EWOMS_VELOCITY_MODULES_HH
#define EWOMS_VELOCITY_MODULES_HH
#include <opm/models/common/darcyfluxmodule.hh>
#include <opm/models/common/forchheimerfluxmodule.hh>
#endif

View File

@ -0,0 +1,583 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This file contains the necessary classes to calculate the
* volumetric fluxes out of a pressure potential gradient using the
* Forchhheimer approach.
*/
#ifndef EWOMS_FORCHHEIMER_FLUX_MODULE_HH
#define EWOMS_FORCHHEIMER_FLUX_MODULE_HH
#include "darcyfluxmodule.hh"
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <cmath>
BEGIN_PROPERTIES
NEW_PROP_TAG(MaterialLaw);
END_PROPERTIES
namespace Opm {
template <class TypeTag>
class ForchheimerIntensiveQuantities;
template <class TypeTag>
class ForchheimerExtensiveQuantities;
template <class TypeTag>
class ForchheimerBaseProblem;
/*!
* \ingroup FluxModules
* \brief Specifies a flux module which uses the Forchheimer relation.
*/
template <class TypeTag>
struct ForchheimerFluxModule
{
typedef ForchheimerIntensiveQuantities<TypeTag> FluxIntensiveQuantities;
typedef ForchheimerExtensiveQuantities<TypeTag> FluxExtensiveQuantities;
typedef ForchheimerBaseProblem<TypeTag> FluxBaseProblem;
/*!
* \brief Register all run-time parameters for the flux module.
*/
static void registerParameters()
{}
};
/*!
* \ingroup FluxModules
* \brief Provides the defaults for the parameters required by the
* Forchheimer velocity approach.
*/
template <class TypeTag>
class ForchheimerBaseProblem
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
public:
/*!
* \brief Returns the Ergun coefficient.
*
* The Ergun coefficient is a measure how much the velocity is
* reduced by turbolence. It is a quantity that does not depend on
* the fluid phase but only on the porous medium in question. A
* value of 0 means that the velocity is not influenced by
* turbolence.
*/
template <class Context>
Scalar ergunCoefficient(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::ergunCoefficient()");
}
/*!
* \brief Returns the ratio between the phase mobility
* \f$k_{r,\alpha}\f$ and its passability
* \f$\eta_{r,\alpha}\f$ for a given fluid phase
* \f$\alpha\f$.
*
* The passability coefficient specifies the influence of the
* other fluid phases on the turbolent behaviour of a given fluid
* phase. By default it is equal to the relative permeability. The
* mobility to passability ratio is the inverse of phase' the viscosity.
*/
template <class Context>
Evaluation mobilityPassabilityRatio(Context& context,
unsigned spaceIdx,
unsigned timeIdx,
unsigned phaseIdx) const
{
return 1.0 / context.intensiveQuantities(spaceIdx, timeIdx).fluidState().viscosity(phaseIdx);
}
};
/*!
* \ingroup FluxModules
* \brief Provides the intensive quantities for the Forchheimer module
*/
template <class TypeTag>
class ForchheimerIntensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
public:
/*!
* \brief Returns the Ergun coefficient.
*
* The Ergun coefficient is a measure how much the velocity is
* reduced by turbolence. A value of 0 means that it is not
* influenced.
*/
const Evaluation& ergunCoefficient() const
{ return ergunCoefficient_; }
/*!
* \brief Returns the passability of a phase.
*/
const Evaluation& mobilityPassabilityRatio(unsigned phaseIdx) const
{ return mobilityPassabilityRatio_[phaseIdx]; }
protected:
void update_(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
{
const auto& problem = elemCtx.problem();
ergunCoefficient_ = problem.ergunCoefficient(elemCtx, dofIdx, timeIdx);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
mobilityPassabilityRatio_[phaseIdx] =
problem.mobilityPassabilityRatio(elemCtx,
dofIdx,
timeIdx,
phaseIdx);
}
private:
Evaluation ergunCoefficient_;
Evaluation mobilityPassabilityRatio_[numPhases];
};
/*!
* \ingroup FluxModules
* \brief Provides the Forchheimer flux module
*
* The commonly used Darcy relation looses its validity for Reynolds numbers \f$ Re <
* 1\f$. If one encounters flow velocities in porous media above this threshold, the
* Forchheimer approach can be used. Like the Darcy approach, it is a relation of with
* the fluid velocity in terms of the gradient of pressure potential. However, this
* relation is not linear (as in the Darcy case) any more.
*
* Therefore, the Newton scheme is used to solve the Forchheimer equation. This velocity
* is then used like the Darcy velocity e.g. by the local residual.
*
* Note that for Reynolds numbers above \f$\approx 500\f$ the standard Forchheimer
* relation also looses it's validity.
*
* The Forchheimer equation is given by the following relation:
*
* \f[
\nabla p_\alpha - \rho_\alpha \vec{g} =
- \frac{\mu_\alpha}{k_{r,\alpha}} K^{-1}\vec{v}_\alpha
- \frac{\rho_\alpha C_E}{\eta_{r,\alpha}} \sqrt{K}^{-1}
\left| \vec{v}_\alpha \right| \vec{v}_\alpha
\f]
*
* Where \f$C_E\f$ is the modified Ergun parameter and \f$\eta_{r,\alpha}\f$ is the
* passability which is given by a closure relation (usually it is assumed to be
* identical to the relative permeability). To avoid numerical problems, the relation
* implemented by this class multiplies both sides with \f$\frac{k_{r_alpha}}{mu} K\f$,
* so we get
*
* \f[
\frac{k_{r_alpha}}{mu} K \left( \nabla p_\alpha - \rho_\alpha \vec{g}\right) =
- \vec{v}_\alpha
- \frac{\rho_\alpha C_E}{\eta_{r,\alpha}} \frac{k_{r_alpha}}{mu} \sqrt{K}
\left| \vec{v}_\alpha \right| \vec{v}_\alpha
\f]
*/
template <class TypeTag>
class ForchheimerExtensiveQuantities
: public DarcyExtensiveQuantities<TypeTag>
{
typedef DarcyExtensiveQuantities<TypeTag> DarcyExtQuants;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ExtensiveQuantities) Implementation;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef Opm::MathToolbox<Evaluation> Toolbox;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldVector<Evaluation, dimWorld> DimEvalVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
typedef Dune::FieldMatrix<Evaluation, dimWorld, dimWorld> DimEvalMatrix;
public:
/*!
* \brief Return the Ergun coefficent at the face's integration point.
*/
const Evaluation& ergunCoefficient() const
{ return ergunCoefficient_; }
/*!
* \brief Return the ratio of the mobility divided by the passability at the face's
* integration point for a given fluid phase.
*
* Usually, that's the inverse of the viscosity.
*/
Evaluation& mobilityPassabilityRatio(unsigned phaseIdx) const
{ return mobilityPassabilityRatio_[phaseIdx]; }
protected:
void calculateGradients_(const ElementContext& elemCtx,
unsigned faceIdx,
unsigned timeIdx)
{
DarcyExtQuants::calculateGradients_(elemCtx, faceIdx, timeIdx);
auto focusDofIdx = elemCtx.focusDofIndex();
unsigned i = static_cast<unsigned>(this->interiorDofIdx_);
unsigned j = static_cast<unsigned>(this->exteriorDofIdx_);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsEx = elemCtx.intensiveQuantities(j, timeIdx);
// calculate the square root of the intrinsic permeability
assert(isDiagonal_(this->K_));
sqrtK_ = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
sqrtK_[dimIdx] = std::sqrt(this->K_[dimIdx][dimIdx]);
// obtain the Ergun coefficient. Lacking better ideas, we use its the arithmetic mean.
if (focusDofIdx == i) {
ergunCoefficient_ =
(intQuantsIn.ergunCoefficient() +
Opm::getValue(intQuantsEx.ergunCoefficient()))/2;
}
else if (focusDofIdx == j)
ergunCoefficient_ =
(Opm::getValue(intQuantsIn.ergunCoefficient()) +
intQuantsEx.ergunCoefficient())/2;
else
ergunCoefficient_ =
(Opm::getValue(intQuantsIn.ergunCoefficient()) +
Opm::getValue(intQuantsEx.ergunCoefficient()))/2;
// obtain the mobility to passability ratio for each phase.
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
unsigned upIdx = static_cast<unsigned>(this->upstreamIndex_(phaseIdx));
const auto& up = elemCtx.intensiveQuantities(upIdx, timeIdx);
if (focusDofIdx == upIdx) {
density_[phaseIdx] =
up.fluidState().density(phaseIdx);
mobilityPassabilityRatio_[phaseIdx] =
up.mobilityPassabilityRatio(phaseIdx);
}
else {
density_[phaseIdx] =
Opm::getValue(up.fluidState().density(phaseIdx));
mobilityPassabilityRatio_[phaseIdx] =
Opm::getValue(up.mobilityPassabilityRatio(phaseIdx));
}
}
}
template <class FluidState>
void calculateBoundaryGradients_(const ElementContext& elemCtx,
unsigned boundaryFaceIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
DarcyExtQuants::calculateBoundaryGradients_(elemCtx,
boundaryFaceIdx,
timeIdx,
fluidState);
auto focusDofIdx = elemCtx.focusDofIndex();
unsigned i = static_cast<unsigned>(this->interiorDofIdx_);
const auto& intQuantsIn = elemCtx.intensiveQuantities(i, timeIdx);
// obtain the Ergun coefficient. Because we are on the boundary here, we will
// take the Ergun coefficient of the interior
if (focusDofIdx == i)
ergunCoefficient_ = intQuantsIn.ergunCoefficient();
else
ergunCoefficient_ = Opm::getValue(intQuantsIn.ergunCoefficient());
// calculate the square root of the intrinsic permeability
assert(isDiagonal_(this->K_));
sqrtK_ = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
sqrtK_[dimIdx] = std::sqrt(this->K_[dimIdx][dimIdx]);
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx))
continue;
if (focusDofIdx == i) {
density_[phaseIdx] = intQuantsIn.fluidState().density(phaseIdx);
mobilityPassabilityRatio_[phaseIdx] = intQuantsIn.mobilityPassabilityRatio(phaseIdx);
}
else {
density_[phaseIdx] =
Opm::getValue(intQuantsIn.fluidState().density(phaseIdx));
mobilityPassabilityRatio_[phaseIdx] =
Opm::getValue(intQuantsIn.mobilityPassabilityRatio(phaseIdx));
}
}
}
/*!
* \brief Calculate the volumetric fluxes of all phases
*
* The pressure potentials and upwind directions must already be
* determined before calling this method!
*/
void calculateFluxes_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
auto focusDofIdx = elemCtx.focusDofIndex();
auto i = asImp_().interiorIndex();
auto j = asImp_().exteriorIndex();
const auto& intQuantsI = elemCtx.intensiveQuantities(i, timeIdx);
const auto& intQuantsJ = elemCtx.intensiveQuantities(j, timeIdx);
const auto& scvf = elemCtx.stencil(timeIdx).interiorFace(scvfIdx);
const auto& normal = scvf.normal();
Opm::Valgrind::CheckDefined(normal);
// obtain the Ergun coefficient from the intensive quantity object. Until a
// better method comes along, we use arithmetic averaging.
if (focusDofIdx == i)
ergunCoefficient_ =
(intQuantsI.ergunCoefficient() +
Opm::getValue(intQuantsJ.ergunCoefficient())) / 2;
else if (focusDofIdx == j)
ergunCoefficient_ =
(Opm::getValue(intQuantsI.ergunCoefficient()) +
intQuantsJ.ergunCoefficient()) / 2;
else
ergunCoefficient_ =
(Opm::getValue(intQuantsI.ergunCoefficient()) +
Opm::getValue(intQuantsJ.ergunCoefficient())) / 2;
///////////////
// calculate the weights of the upstream and the downstream control volumes
///////////////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
this->filterVelocity_[phaseIdx] = 0.0;
this->volumeFlux_[phaseIdx] = 0.0;
continue;
}
calculateForchheimerFlux_(phaseIdx);
this->volumeFlux_[phaseIdx] = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++ dimIdx)
this->volumeFlux_[phaseIdx] +=
this->filterVelocity_[phaseIdx][dimIdx]*normal[dimIdx];
}
}
/*!
* \brief Calculate the volumetric flux rates of all phases at the domain boundary
*/
void calculateBoundaryFluxes_(const ElementContext& elemCtx,
unsigned bfIdx,
unsigned timeIdx)
{
const auto& boundaryFace = elemCtx.stencil(timeIdx).boundaryFace(bfIdx);
const auto& normal = boundaryFace.normal();
///////////////
// calculate the weights of the upstream and the downstream degrees of freedom
///////////////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; phaseIdx++) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
this->filterVelocity_[phaseIdx] = 0.0;
this->volumeFlux_[phaseIdx] = 0.0;
continue;
}
calculateForchheimerFlux_(phaseIdx);
this->volumeFlux_[phaseIdx] = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
this->volumeFlux_[phaseIdx] +=
this->filterVelocity_[phaseIdx][dimIdx]*normal[dimIdx];
}
}
void calculateForchheimerFlux_(unsigned phaseIdx)
{
// initial guess: filter velocity is zero
DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
velocity = 0.0;
// the change of velocity between two consecutive Newton iterations
DimEvalVector deltaV(1e5);
// the function value that is to be minimized of the equation that is to be
// fulfilled
DimEvalVector residual;
// derivative of equation that is to be solved
DimEvalMatrix gradResid;
// search by means of the Newton method for a root of Forchheimer equation
unsigned newtonIter = 0;
while (deltaV.one_norm() > 1e-11) {
if (newtonIter >= 50)
throw Opm::NumericalIssue("Could not determine Forchheimer velocity within "
+std::to_string(newtonIter)+" iterations");
++newtonIter;
// calculate the residual and its Jacobian matrix
gradForchheimerResid_(residual, gradResid, phaseIdx);
// newton method
gradResid.solve(deltaV, residual);
velocity -= deltaV;
}
}
void forchheimerResid_(DimEvalVector& residual, unsigned phaseIdx) const
{
const DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
// Obtaining the upstreamed quantities
const auto& mobility = this->mobility_[phaseIdx];
const auto& density = density_[phaseIdx];
const auto& mobilityPassabilityRatio = mobilityPassabilityRatio_[phaseIdx];
// optain the quantites for the integration point
const auto& pGrad = this->potentialGrad_[phaseIdx];
// residual = v_\alpha
residual = velocity;
// residual += mobility_\alpha K(\grad p_\alpha - \rho_\alpha g)
// -> this->K_.usmv(mobility, pGrad, residual);
assert(isDiagonal_(this->K_));
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++ dimIdx)
residual[dimIdx] += mobility*pGrad[dimIdx]*this->K_[dimIdx][dimIdx];
// Forchheimer turbulence correction:
//
// residual +=
// \rho_\alpha
// * mobility_\alpha
// * C_E / \eta_{r,\alpha}
// * abs(v_\alpha) * sqrt(K)*v_\alpha
//
// -> sqrtK_.usmv(density*mobilityPassabilityRatio*ergunCoefficient_*velocity.two_norm(),
// velocity,
// residual);
Evaluation absVel = 0.0;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
absVel += velocity[dimIdx]*velocity[dimIdx];
// the derivatives of the square root of 0 are undefined, so we must guard
// against this case
if (absVel <= 0.0)
absVel = 0.0;
else
absVel = Toolbox::sqrt(absVel);
const auto& alpha = density*mobilityPassabilityRatio*ergunCoefficient_*absVel;
for (unsigned dimIdx = 0; dimIdx < dimWorld; ++dimIdx)
residual[dimIdx] += sqrtK_[dimIdx]*alpha*velocity[dimIdx];
Opm::Valgrind::CheckDefined(residual);
}
void gradForchheimerResid_(DimEvalVector& residual,
DimEvalMatrix& gradResid,
unsigned phaseIdx)
{
// TODO (?) use AD for this.
DimEvalVector& velocity = this->filterVelocity_[phaseIdx];
forchheimerResid_(residual, phaseIdx);
Scalar eps = 1e-11;
DimEvalVector tmp;
for (unsigned i = 0; i < dimWorld; ++i) {
Scalar coordEps = std::max(eps, Toolbox::scalarValue(velocity[i]) * (1 + eps));
velocity[i] += coordEps;
forchheimerResid_(tmp, phaseIdx);
tmp -= residual;
tmp /= coordEps;
gradResid[i] = tmp;
velocity[i] -= coordEps;
}
}
/*!
* \brief Check whether all off-diagonal entries of a tensor are zero.
*
* \param K the tensor that is to be checked.
* \return True iff all off-diagonals are zero.
*
*/
bool isDiagonal_(const DimMatrix& K) const
{
for (unsigned i = 0; i < dimWorld; i++) {
for (unsigned j = 0; j < dimWorld; j++) {
if (i == j)
continue;
if (std::abs(K[i][j]) > 1e-25)
return false;
}
}
return true;
}
private:
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
protected:
// intrinsic permeability tensor and its square root
DimVector sqrtK_;
// Ergun coefficient of all phases at the integration point
Evaluation ergunCoefficient_;
// Passability of all phases at the integration point
Evaluation mobilityPassabilityRatio_[numPhases];
// Density of all phases at the integration point
Evaluation density_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,177 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseExtensiveQuantities
*/
#ifndef EWOMS_MULTI_PHASE_BASE_EXTENSIVE_QUANTITIES_HH
#define EWOMS_MULTI_PHASE_BASE_EXTENSIVE_QUANTITIES_HH
#include "multiphasebaseproperties.hh"
#include <opm/models/common/quantitycallbacks.hh>
#include <ewoms/disc/common/fvbaseextensivequantities.hh>
#include <opm/models/utils/parametersystem.hh>
#include <opm/material/common/Valgrind.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/common/fvector.hh>
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief This class calculates the pressure potential gradients and
* the filter velocities for multi-phase flow in porous media
*/
template <class TypeTag>
class MultiPhaseBaseExtensiveQuantities
: public GET_PROP_TYPE(TypeTag, DiscExtensiveQuantities)
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxExtensiveQuantities
{
typedef typename GET_PROP_TYPE(TypeTag, DiscExtensiveQuantities) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef typename GET_PROP_TYPE(TypeTag, FluxModule) FluxModule;
typedef typename FluxModule::FluxExtensiveQuantities FluxExtensiveQuantities;
public:
/*!
* \brief Register all run-time parameters for the extensive quantities.
*/
static void registerParameters()
{
FluxModule::registerParameters();
}
/*!
* \brief Update the extensive quantities for a given sub-control-volume-face.
*
* \param elemCtx Reference to the current element context.
* \param scvfIdx The local index of the sub-control-volume face for
* which the extensive quantities should be calculated.
* \param timeIdx The index used by the time discretization.
*/
void update(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
{
ParentType::update(elemCtx, scvfIdx, timeIdx);
// compute the pressure potential gradients
FluxExtensiveQuantities::calculateGradients_(elemCtx, scvfIdx, timeIdx);
// Check whether the pressure potential is in the same direction as the face
// normal or in the opposite one
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!elemCtx.model().phaseIsConsidered(phaseIdx)) {
Opm::Valgrind::SetUndefined(upstreamScvIdx_[phaseIdx]);
Opm::Valgrind::SetUndefined(downstreamScvIdx_[phaseIdx]);
continue;
}
upstreamScvIdx_[phaseIdx] = FluxExtensiveQuantities::upstreamIndex_(phaseIdx);
downstreamScvIdx_[phaseIdx] = FluxExtensiveQuantities::downstreamIndex_(phaseIdx);
}
FluxExtensiveQuantities::calculateFluxes_(elemCtx, scvfIdx, timeIdx);
}
/*!
* \brief Update the extensive quantities for a given boundary face.
*
* \param context Reference to the current execution context.
* \param bfIdx The local index of the boundary face for which
* the extensive quantities should be calculated.
* \param timeIdx The index used by the time discretization.
* \param fluidState The FluidState on the domain boundary.
* \param paramCache The FluidSystem's parameter cache.
*/
template <class Context, class FluidState>
void updateBoundary(const Context& context,
unsigned bfIdx,
unsigned timeIdx,
const FluidState& fluidState)
{
ParentType::updateBoundary(context, bfIdx, timeIdx, fluidState);
FluxExtensiveQuantities::calculateBoundaryGradients_(context.elementContext(),
bfIdx,
timeIdx,
fluidState);
FluxExtensiveQuantities::calculateBoundaryFluxes_(context.elementContext(),
bfIdx,
timeIdx);
}
/*!
* \brief Return the local index of the upstream control volume for a given phase as
* a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase for which the upstream
* direction is requested.
*/
short upstreamIndex(unsigned phaseIdx) const
{ return upstreamScvIdx_[phaseIdx]; }
/*!
* \brief Return the local index of the downstream control volume
* for a given phase as a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase for which the downstream
* direction is requested.
*/
short downstreamIndex(unsigned phaseIdx) const
{ return downstreamScvIdx_[phaseIdx]; }
/*!
* \brief Return the weight of the upstream control volume
* for a given phase as a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase
*/
Scalar upstreamWeight(unsigned phaseIdx OPM_UNUSED) const
{ return 1.0; }
/*!
* \brief Return the weight of the downstream control volume
* for a given phase as a function of the normal flux.
*
* \param phaseIdx The index of the fluid phase
*/
Scalar downstreamWeight(unsigned phaseIdx) const
{ return 1.0 - upstreamWeight(phaseIdx); }
private:
short upstreamScvIdx_[numPhases];
short downstreamScvIdx_[numPhases];
};
} // namespace Opm
#endif

View File

@ -0,0 +1,253 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseModel
*/
#ifndef EWOMS_MULTI_PHASE_BASE_MODEL_HH
#define EWOMS_MULTI_PHASE_BASE_MODEL_HH
#include <opm/material/densead/Math.hpp>
#include "multiphasebaseproperties.hh"
#include "multiphasebaseproblem.hh"
#include "multiphasebaseextensivequantities.hh"
#include <opm/models/common/flux.hh>
#include <ewoms/disc/vcfv/vcfvdiscretization.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/thermal/NullThermalConductionLaw.hpp>
#include <opm/material/thermal/NullSolidEnergyLaw.hpp>
#include <opm/material/common/Unused.hpp>
namespace Opm {
template <class TypeTag>
class MultiPhaseBaseModel;
}
BEGIN_PROPERTIES
//! The generic type tag for problems using the immiscible multi-phase model
NEW_TYPE_TAG(MultiPhaseBaseModel, INHERITS_FROM(VtkMultiPhase, VtkTemperature));
//! Specify the splices of the MultiPhaseBaseModel type tag
SET_SPLICES(MultiPhaseBaseModel, SpatialDiscretizationSplice);
//! Set the default spatial discretization
//!
//! We use a vertex centered finite volume method by default
SET_TAG_PROP(MultiPhaseBaseModel, SpatialDiscretizationSplice, VcfvDiscretization);
//! set the number of equations to the number of phases
SET_INT_PROP(MultiPhaseBaseModel, NumEq, GET_PROP_TYPE(TypeTag, Indices)::numEq);
//! The number of phases is determined by the fluid system
SET_INT_PROP(MultiPhaseBaseModel, NumPhases, GET_PROP_TYPE(TypeTag, FluidSystem)::numPhases);
//! Number of chemical species in the system
SET_INT_PROP(MultiPhaseBaseModel, NumComponents, GET_PROP_TYPE(TypeTag, FluidSystem)::numComponents);
//! The type of the base base class for actual problems
SET_TYPE_PROP(MultiPhaseBaseModel, BaseProblem, Opm::MultiPhaseBaseProblem<TypeTag>);
//! By default, use the Darcy relation to determine the phase velocity
SET_TYPE_PROP(MultiPhaseBaseModel, FluxModule, Opm::DarcyFluxModule<TypeTag>);
/*!
* \brief Set the material law to the null law by default.
*/
SET_PROP(MultiPhaseBaseModel, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::NullMaterialTraits<Scalar, FluidSystem::numPhases> Traits;
public:
typedef Opm::NullMaterial<Traits> type;
};
/*!
* \brief Set the property for the material parameters by extracting
* it from the material law.
*/
SET_TYPE_PROP(MultiPhaseBaseModel,
MaterialLawParams,
typename GET_PROP_TYPE(TypeTag, MaterialLaw)::Params);
//! set the energy storage law for the solid to the one which assumes zero heat capacity
//! by default
SET_TYPE_PROP(MultiPhaseBaseModel,
SolidEnergyLaw,
Opm::NullSolidEnergyLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! extract the type of the parameter objects for the solid energy storage law from the
//! law itself
SET_TYPE_PROP(MultiPhaseBaseModel,
SolidEnergyLawParams,
typename GET_PROP_TYPE(TypeTag, SolidEnergyLaw)::Params);
//! set the thermal conduction law to a dummy one by default
SET_TYPE_PROP(MultiPhaseBaseModel,
ThermalConductionLaw,
Opm::NullThermalConductionLaw<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! extract the type of the parameter objects for the thermal conduction law from the law
//! itself
SET_TYPE_PROP(MultiPhaseBaseModel,
ThermalConductionLawParams,
typename GET_PROP_TYPE(TypeTag, ThermalConductionLaw)::Params);
//! disable gravity by default
SET_BOOL_PROP(MultiPhaseBaseModel, EnableGravity, false);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup MultiPhaseBaseModel
* \brief A base class for fully-implicit multi-phase porous-media flow models
* which assume multiple fluid phases.
*/
template <class TypeTag>
class MultiPhaseBaseModel : public GET_PROP_TYPE(TypeTag, Discretization)
{
typedef typename GET_PROP_TYPE(TypeTag, Discretization) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Model) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, ThreadManager) ThreadManager;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
typedef typename GridView::template Codim<0>::Entity Element;
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
enum { numComponents = FluidSystem::numComponents };
public:
MultiPhaseBaseModel(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \brief Register all run-time parameters for the immiscible model.
*/
static void registerParameters()
{
ParentType::registerParameters();
// register runtime parameters of the VTK output modules
Opm::VtkMultiPhaseModule<TypeTag>::registerParameters();
Opm::VtkTemperatureModule<TypeTag>::registerParameters();
}
/*!
* \brief Returns true iff a fluid phase is used by the model.
*
* \param phaseIdx The index of the fluid phase in question
*/
bool phaseIsConsidered(unsigned phaseIdx OPM_UNUSED) const
{ return true; }
/*!
* \brief Compute the total storage inside one phase of all
* conservation quantities.
*
* \copydetails Doxygen::storageParam
* \copydetails Doxygen::phaseIdxParam
*/
void globalPhaseStorage(EqVector& storage, unsigned phaseIdx)
{
assert(0 <= phaseIdx && phaseIdx < numPhases);
storage = 0;
ThreadedEntityIterator<GridView, /*codim=*/0> threadedElemIt(this->gridView());
std::mutex mutex;
#ifdef _OPENMP
#pragma omp parallel
#endif
{
// Attention: the variables below are thread specific and thus cannot be
// moved in front of the #pragma!
unsigned threadId = ThreadManager::threadId();
ElementContext elemCtx(this->simulator_);
ElementIterator elemIt = threadedElemIt.beginParallel();
EqVector tmp;
for (; !threadedElemIt.isFinished(elemIt); elemIt = threadedElemIt.increment()) {
const Element& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue; // ignore ghost and overlap elements
elemCtx.updateStencil(elem);
elemCtx.updateIntensiveQuantities(/*timeIdx=*/0);
const auto& stencil = elemCtx.stencil(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < elemCtx.numDof(/*timeIdx=*/0); ++dofIdx) {
const auto& scv = stencil.subControlVolume(dofIdx);
const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0);
tmp = 0;
this->localResidual(threadId).addPhaseStorage(tmp,
elemCtx,
dofIdx,
/*timeIdx=*/0,
phaseIdx);
tmp *= scv.volume()*intQuants.extrusionFactor();
mutex.lock();
storage += tmp;
mutex.unlock();
}
}
}
storage = this->gridView_.comm().sum(storage);
}
void registerOutputModules_()
{
ParentType::registerOutputModules_();
// add the VTK output modules which make sense for all multi-phase models
this->addOutputModule(new Opm::VtkMultiPhaseModule<TypeTag>(this->simulator_));
this->addOutputModule(new Opm::VtkTemperatureModule<TypeTag>(this->simulator_));
}
private:
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
};
} // namespace Opm
#endif

View File

@ -0,0 +1,409 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::MultiPhaseBaseProblem
*/
#ifndef EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
#define EWOMS_MULTI_PHASE_BASE_PROBLEM_HH
#include "multiphasebaseproperties.hh"
#include <ewoms/disc/common/fvbaseproblem.hh>
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
#include <opm/material/common/Means.hpp>
#include <opm/material/common/Unused.hpp>
#include <opm/material/common/Exceptions.hpp>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
BEGIN_PROPERTIES
NEW_PROP_TAG(SolidEnergyLawParams);
NEW_PROP_TAG(ThermalConductionLawParams);
NEW_PROP_TAG(EnableGravity);
NEW_PROP_TAG(FluxModule);
END_PROPERTIES
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief The base class for the problems of ECFV discretizations which deal
* with a multi-phase flow through a porous medium.
*/
template<class TypeTag>
class MultiPhaseBaseProblem
: public FvBaseProblem<TypeTag>
, public GET_PROP_TYPE(TypeTag, FluxModule)::FluxBaseProblem
{
//! \cond SKIP_THIS
typedef Opm::FvBaseProblem<TypeTag> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Implementation;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, SolidEnergyLawParams) SolidEnergyLawParams;
typedef typename GET_PROP_TYPE(TypeTag, ThermalConductionLawParams) ThermalConductionLawParams;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw)::Params MaterialLawParams;
enum { dimWorld = GridView::dimensionworld };
enum { numPhases = GET_PROP_VALUE(TypeTag, NumPhases) };
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
//! \endcond
public:
/*!
* \copydoc Problem::FvBaseProblem(Simulator& )
*/
MultiPhaseBaseProblem(Simulator& simulator)
: ParentType(simulator)
{ init_(); }
/*!
* \brief Register all run-time parameters for the problem and the model.
*/
static void registerParameters()
{
ParentType::registerParameters();
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableGravity,
"Use the gravity correction for the pressure gradients.");
}
/*!
* \brief Returns the intrinsic permeability of an intersection.
*
* This method is specific to the finite volume discretizations. If left unspecified,
* it calls the intrinsicPermeability() method for the intersection's interior and
* exterior finite volumes and averages them harmonically. Note that if this function
* is defined, the intrinsicPermeability() method does not need to be defined by the
* problem (if a finite-volume discretization is used).
*/
template <class Context>
void intersectionIntrinsicPermeability(DimMatrix& result,
const Context& context,
unsigned intersectionIdx,
unsigned timeIdx) const
{
const auto& scvf = context.stencil(timeIdx).interiorFace(intersectionIdx);
const DimMatrix& K1 = asImp_().intrinsicPermeability(context, scvf.interiorIndex(), timeIdx);
const DimMatrix& K2 = asImp_().intrinsicPermeability(context, scvf.exteriorIndex(), timeIdx);
// entry-wise harmonic mean. this is almost certainly wrong if
// you have off-main diagonal entries in your permeabilities!
for (unsigned i = 0; i < dimWorld; ++i)
for (unsigned j = 0; j < dimWorld; ++j)
result[i][j] = Opm::harmonicMean(K1[i][j], K2[i][j]);
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \brief Returns the intrinsic permeability tensor \f$[m^2]\f$ at a given position
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::intrinsicPermeability()");
}
/*!
* \brief Returns the porosity [] of the porous medium for a given
* control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar porosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::porosity()");
}
/*!
* \brief Returns the parameter object for the energy storage law of the solid in a
* sub-control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const SolidEnergyLawParams&
solidEnergyParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::solidEnergyParams()");
}
/*!
* \brief Returns the parameter object for the thermal conductivity law in a
* sub-control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const ThermalConductionLawParams&
thermalConductionParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::thermalConductionParams()");
}
/*!
* \brief Define the tortuosity.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar tortuosity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::tortuosity()");
}
/*!
* \brief Define the dispersivity.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar dispersivity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
throw std::logic_error("Not implemented: Problem::dispersivity()");
}
/*!
* \brief Returns the material law parameters \f$\mathrm{[K]}\f$ within a control volume.
*
* If you get a compiler error at this method, you set the
* MaterialLaw property to something different than
* Opm::NullMaterialLaw. In this case, you have to overload the
* matererialLaw() method in the derived class!
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const MaterialLawParams &
materialLawParams(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{
static MaterialLawParams dummy;
return dummy;
}
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ within a control volume.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return asImp_().temperature(); }
/*!
* \brief Returns the temperature \f$\mathrm{[K]}\f$ for an isothermal problem.
*
* This is not specific to the discretization. By default it just
* throws an exception so it must be overloaded by the problem if
* no energy equation is to be used.
*/
Scalar temperature() const
{ throw std::logic_error("Not implemented:temperature() method not implemented by the actual problem"); }
/*!
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
*
* \param context Reference to the object which represents the
* current execution context.
* \param spaceIdx The local index of spatial entity defined by the context
* \param timeIdx The index used by the time discretization.
*/
template <class Context>
const DimVector& gravity(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return asImp_().gravity(); }
/*!
* \brief Returns the acceleration due to gravity \f$\mathrm{[m/s^2]}\f$.
*
* This method is used for problems where the gravitational
* acceleration does not depend on the spatial position. The
* default behaviour is that if the <tt>EnableGravity</tt>
* property is true, \f$\boldsymbol{g} = ( 0,\dots,\ -9.81)^T \f$ holds,
* else \f$\boldsymbol{g} = ( 0,\dots, 0)^T \f$.
*/
const DimVector& gravity() const
{ return gravity_; }
/*!
* \brief Mark grid cells for refinement or coarsening
*
* \return The number of elements marked for refinement or coarsening.
*/
unsigned markForGridAdaptation()
{
typedef Opm::MathToolbox<Evaluation> Toolbox;
unsigned numMarked = 0;
ElementContext elemCtx( this->simulator() );
auto gridView = this->simulator().vanguard().gridView();
auto& grid = this->simulator().vanguard().grid();
auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
auto elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (; elemIt != elemEndIt; ++elemIt)
{
const auto& element = *elemIt ;
elemCtx.updateAll( element );
// HACK: this should better be part of an AdaptionCriterion class
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar minSat = 1e100 ;
Scalar maxSat = -1e100;
size_t nDofs = elemCtx.numDof(/*timeIdx=*/0);
for (unsigned dofIdx = 0; dofIdx < nDofs; ++dofIdx)
{
const auto& intQuant = elemCtx.intensiveQuantities( dofIdx, /*timeIdx=*/0 );
minSat = std::min(minSat,
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
maxSat = std::max(maxSat,
Toolbox::value(intQuant.fluidState().saturation(phaseIdx)));
}
const Scalar indicator =
(maxSat - minSat)/(std::max<Scalar>(0.01, maxSat+minSat)/2);
if( indicator > 0.2 && element.level() < 2 ) {
grid.mark( 1, element );
++ numMarked;
}
else if ( indicator < 0.025 ) {
grid.mark( -1, element );
++ numMarked;
}
else
{
grid.mark( 0, element );
}
}
}
// get global sum so that every proc is on the same page
numMarked = this->simulator().vanguard().grid().comm().sum( numMarked );
return numMarked;
}
// \}
protected:
/*!
* \brief Converts a Scalar value to an isotropic Tensor
*
* This is convenient e.g. for specifying intrinsic permebilities:
* \code{.cpp}
* auto permTensor = this->toDimMatrix_(1e-12);
* \endcode
*
* \param val The scalar value which should be expressed as a tensor
*/
DimMatrix toDimMatrix_(Scalar val) const
{
DimMatrix ret(0.0);
for (unsigned i = 0; i < DimMatrix::rows; ++i)
ret[i][i] = val;
return ret;
}
DimVector gravity_;
private:
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
void init_()
{
gravity_ = 0.0;
if (EWOMS_GET_PARAM(TypeTag, bool, EnableGravity))
gravity_[dimWorld-1] = -9.81;
}
};
} // namespace Opm
#endif

View File

@ -0,0 +1,69 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \ingroup MultiPhaseBaseModel
*
* \brief Defines the common properties required by the porous medium
* multi-phase models.
*/
#ifndef EWOMS_MULTI_PHASE_BASE_PROPERTIES_HH
#define EWOMS_MULTI_PHASE_BASE_PROPERTIES_HH
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <ewoms/io/vtkmultiphasemodule.hh>
#include <ewoms/io/vtktemperaturemodule.hh>
BEGIN_PROPERTIES
//! The splice to be used for the spatial discretization
NEW_PROP_TAG(SpatialDiscretizationSplice);
//! Number of fluid phases in the system
NEW_PROP_TAG(NumPhases);
//! Number of chemical species in the system
NEW_PROP_TAG(NumComponents);
//! Enumerations used by the model
NEW_PROP_TAG(Indices);
//! The material law which ought to be used (extracted from the spatial parameters)
NEW_PROP_TAG(MaterialLaw);
//! The context material law (extracted from the spatial parameters)
NEW_PROP_TAG(MaterialLawParams);
//! The material law for the energy stored in the solid matrix
NEW_PROP_TAG(SolidEnergyLaw);
//! The parameters of the material law for energy storage of the solid
NEW_PROP_TAG(SolidEnergyLawParams);
//! The material law for thermal conduction
NEW_PROP_TAG(ThermalConductionLaw);
//! The parameters of the material law for thermal conduction
NEW_PROP_TAG(ThermalConductionLawParams);
//!The fluid systems including the information about the phases
NEW_PROP_TAG(FluidSystem);
//! Specifies the relation used for velocity
NEW_PROP_TAG(FluxModule);
//! Returns whether gravity is considered in the problem
NEW_PROP_TAG(EnableGravity);
END_PROPERTIES
#endif

View File

@ -0,0 +1,482 @@
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This method contains all callback classes for quantities
* that are required by some extensive quantities
*/
#ifndef EWOMS_QUANTITY_CALLBACKS_HH
#define EWOMS_QUANTITY_CALLBACKS_HH
#include <ewoms/disc/common/fvbaseproperties.hh>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/common/Valgrind.hpp>
#include <type_traits>
#include <utility>
namespace Opm {
/*!
* \ingroup Discretization
*
* \brief Callback class for temperature.
*/
template <class TypeTag>
class TemperatureCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().temperature(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
TemperatureCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{}
/*!
* \brief Return the temperature given the index of a degree of freedom within an
* element context.
*
* In this context, we assume that thermal equilibrium applies, i.e. that the
* temperature of all phases is equal.
*/
ResultType operator()(unsigned dofIdx) const
{ return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().temperature(/*phaseIdx=*/0); }
private:
const ElementContext& elemCtx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for a phase pressure.
*/
template <class TypeTag>
class PressureCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().pressure(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
PressureCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
PressureCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the pressure
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the pressure of the specified phase given the index of a degree of
* freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().pressure(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for a phase pressure.
*/
template <class TypeTag, class FluidState>
class BoundaryPressureCallback
{
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQRawFluidState;
typedef typename std::remove_const<typename std::remove_reference<IQRawFluidState>::type>::type IQFluidState;
typedef typename IQFluidState::Scalar IQScalar;
typedef Opm::MathToolbox<IQScalar> Toolbox;
public:
typedef IQScalar ResultType;
BoundaryPressureCallback(const ElementContext& elemCtx, const FluidState& boundaryFs)
: elemCtx_(elemCtx)
, boundaryFs_(boundaryFs)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
BoundaryPressureCallback(const ElementContext& elemCtx,
const FluidState& boundaryFs,
unsigned phaseIdx)
: elemCtx_(elemCtx)
, boundaryFs_(boundaryFs)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the pressure
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the pressure of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().pressure(phaseIdx_);
}
IQScalar boundaryValue() const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return boundaryFs_.pressure(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
const FluidState& boundaryFs_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the density of a phase.
*/
template <class TypeTag>
class DensityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().density(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
DensityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
DensityCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the density
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the density of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().density(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the molar density of a phase.
*/
template <class TypeTag>
class MolarDensityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
public:
typedef decltype(std::declval<IQFluidState>().molarDensity(0)) ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
MolarDensityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
MolarDensityCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the molar
* density should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the molar density of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().molarDensity(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the viscosity of a phase.
*/
template <class TypeTag>
class ViscosityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().viscosity(0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
ViscosityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(phaseIdx_); }
ViscosityCallback(const ElementContext& elemCtx, unsigned phaseIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
{}
/*!
* \brief Set the index of the fluid phase for which the viscosity
* should be returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Return the viscosity of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().viscosity(phaseIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the velocity of a phase at the center of a DOF.
*/
template <class TypeTag>
class VelocityCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef decltype(IntensiveQuantities().velocityCenter()) ResultRawType;
enum { dim = GridView::dimensionworld };
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename ResultType::field_type ResultFieldType;
typedef typename Opm::MathToolbox<ResultFieldType>::ValueType ResultFieldValueType;
VelocityCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{}
/*!
* \brief Return the velocity of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{ return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).velocityCenter(); }
private:
const ElementContext& elemCtx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for the velocity of a phase at the center of a DOF.
*/
template <class TypeTag>
class VelocityComponentCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(IntensiveQuantities().velocityCenter()[0]) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
VelocityComponentCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{ Opm::Valgrind::SetUndefined(dimIdx_); }
VelocityComponentCallback(const ElementContext& elemCtx, unsigned dimIdx)
: elemCtx_(elemCtx)
, dimIdx_(dimIdx)
{}
/*!
* \brief Set the index of the component of the velocity
* which should be returned.
*/
void setDimIndex(unsigned dimIdx)
{ dimIdx_ = dimIdx; }
/*!
* \brief Return the velocity of a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(dimIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).velocityCenter()[dimIdx_];
}
private:
const ElementContext& elemCtx_;
unsigned dimIdx_;
};
/*!
* \ingroup Discretization
*
* \brief Callback class for a mole fraction of a component in a phase.
*/
template <class TypeTag>
class MoleFractionCallback
{
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef decltype(std::declval<IntensiveQuantities>().fluidState()) IQFluidState;
typedef decltype(std::declval<IQFluidState>().moleFraction(0, 0)) ResultRawType;
public:
typedef typename std::remove_const<typename std::remove_reference<ResultRawType>::type>::type ResultType;
typedef typename Opm::MathToolbox<ResultType>::ValueType ResultValueType;
MoleFractionCallback(const ElementContext& elemCtx)
: elemCtx_(elemCtx)
{
Opm::Valgrind::SetUndefined(phaseIdx_);
Opm::Valgrind::SetUndefined(compIdx_);
}
MoleFractionCallback(const ElementContext& elemCtx, unsigned phaseIdx, unsigned compIdx)
: elemCtx_(elemCtx)
, phaseIdx_(static_cast<unsigned short>(phaseIdx))
, compIdx_(static_cast<unsigned short>(compIdx))
{}
/*!
* \brief Set the index of the fluid phase for which a mole fraction should be
* returned.
*/
void setPhaseIndex(unsigned phaseIdx)
{ phaseIdx_ = static_cast<unsigned short>(phaseIdx); }
/*!
* \brief Set the index of the component for which the mole fraction should be
* returned.
*/
void setComponentIndex(unsigned compIdx)
{ compIdx_ = static_cast<unsigned short>(compIdx); }
/*!
* \brief Return the mole fraction of a component in a phase given the index of a
* degree of freedom within an element context.
*/
ResultType operator()(unsigned dofIdx) const
{
Opm::Valgrind::CheckDefined(phaseIdx_);
Opm::Valgrind::CheckDefined(compIdx_);
return elemCtx_.intensiveQuantities(dofIdx, /*timeIdx=*/0).fluidState().moleFraction(phaseIdx_, compIdx_);
}
private:
const ElementContext& elemCtx_;
unsigned short phaseIdx_;
unsigned short compIdx_;
};
} // namespace Opm
#endif