Move computation of well potentials from simulator class ot model class

- the computation of well potentials in the model class calculates the
well potentials using computeWellFlux()
- in this way the well potential calculations also handle well where
some perforations are closed by the simulator due to cross-flow.
- the well potentials pr perforation and phase is stored in the well
state.
This commit is contained in:
Tor Harald Sandve 2016-04-12 08:50:34 +02:00
parent d9787f7593
commit 18246263e9
4 changed files with 127 additions and 20 deletions

View File

@ -406,6 +406,28 @@ namespace Opm {
WellState& well_state);
void
<<<<<<< HEAD
=======
computeWellFlux(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
V& aliveWells,
std::vector<ADB>& cq_s) const;
void
updatePerfPhaseRatesAndPressures(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw) const;
void
computeWellPotentials(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
WellState& well_state);
void
>>>>>>> Move computation of well potentials from simulator class ot model class
addWellFluxEq(const std::vector<ADB>& cq_s,
const SolutionState& state);

View File

@ -867,9 +867,104 @@ namespace detail {
asImpl().addWellFluxEq(cq_s, state);
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
asImpl().addWellControlEq(state, well_state, aliveWells);
asImpl().computeWellPotentials(state, mob_perfcells, b_perfcells, well_state);
}
template <class Grid, class Implementation>
void
BlackoilModelBase<Grid, Implementation>::
computeWellPotentials(const SolutionState& state,
const std::vector<ADB>& mob_perfcells,
const std::vector<ADB>& b_perfcells,
WellState& well_state)
{
const int nw = wells().number_of_wells;
const int np = wells().number_of_phases;
// const Opm::PhaseUsage pu = fluid_.phaseUsage();
V bhps = V::Zero(nw);
for (int w = 0; w < nw; ++w) {
const WellControls* ctrl = wells().ctrls[w];
const int nwc = well_controls_get_num(ctrl);
//Loop over all controls until we find a BHP control
//or a THP control that specifies what we need.
//Pick the value that gives largest potential flow
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == BHP) {
bhps[w] = well_controls_iget_target(ctrl, ctrl_index);
}
// if(well_controls_iget_type(ctrl, ctrl_index) == THP) {
// double aqua = 0.0;
// double liquid = 0.0;
// double vapour = 0.0;
// if (active_[ Water ]) {
// aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
// }
// if (active_[ Oil ]) {
// liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
// }
// if (active_[ Gas ]) {
// vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
// }
// const int vfp = well_controls_iget_vfp(ctrl, ctrl_index);
// const double& thp = well_controls_iget_target(ctrl, ctrl_index);
// const double& alq = well_controls_iget_alq(ctrl, ctrl_index);
// //Set *BHP* target by calculating bhp from THP
// const WellType& well_type = wells().type[w];
// if (well_type == INJECTOR) {
// double dp = detail::computeHydrostaticCorrection(
// wells(), w, vfp_properties_.getInj()->getTable(vfp)->getDatumDepth(),
// well_perforation_densities_, gravity);
// const double bhp = vfp_properties_.getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
// // pick the bhp that gives the largest potentials i.e. largest bhp for injectors
// if ( bhp > bhps[w]) {
// bhps[w] = bhp;
// }
// }
// else if (well_type == PRODUCER) {
// double dp = detail::computeHydrostaticCorrection(
// wells(), w, vfp_properties_.getProd()->getTable(vfp)->getDatumDepth(),
// well_perforation_densities_, gravity);
// const double bhp = vfp_properties_.getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
// // pick the bhp that gives the largest potentials i.e. smalest bhp for producers
// if ( bhp < bhps[w]) {
// bhps[w] = bhp;
// }
// }
// else {
// OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
// }
// }
}
}
// use bhp limit from control
SolutionState state0 = state;
asImpl().makeConstantState(state0);
state0.bhp = ADB::constant(bhps);
// compute well potentials
V aliveWells;
std::vector<ADB> well_potentials;
asImpl().computeWellFlux(state0, mob_perfcells, b_perfcells, aliveWells, well_potentials);
// store well potentials in the well state
// transform to a single vector instead of separate vectors pr phase
const int nperf = wells().well_connpos[nw];
V cq = superset(well_potentials[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(well_potentials[phase].value(), Span(nperf, np, phase), nperf*np);
}
well_state.wellPotentials().assign(cq.data(), cq.data() + nperf*np);
}

View File

@ -396,30 +396,12 @@ namespace Opm
{
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
well_potentials.clear();
well_potentials.resize(nw*np,0.0);
for (int w = 0; w < nw; ++w) {
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
const double well_cell_pressure = x.pressure()[wells->well_cells[perf]];
const double drawdown_used = well_cell_pressure - xw.perfPress()[perf];
const WellControls* ctrl = wells->ctrls[w];
const int nwc = well_controls_get_num(ctrl);
//Loop over all controls until we find a BHP control
//that specifies what we need...
double bhp = 0.0;
for (int ctrl_index=0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == BHP) {
bhp = well_controls_iget_target(ctrl, ctrl_index);
}
// TODO: do something for thp;
}
// Calculate the pressure difference in the well perforation
const double dp = xw.perfPress()[perf] - xw.bhp()[w];
const double drawdown_maximum = well_cell_pressure - (bhp + dp);
for (int phase = 0; phase < np; ++phase) {
well_potentials[w*np + phase] += (drawdown_maximum / drawdown_used * xw.perfPhaseRates()[perf*np + phase]);
well_potentials[w*np + phase] += xw.wellPotentials()[perf*np + phase];
}
}
}

View File

@ -102,6 +102,9 @@ namespace Opm
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
well_potentials_.clear();
well_potentials_.resize(nperf * np, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
@ -184,9 +187,14 @@ namespace Opm
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
/// One rate per phase and well connection.
std::vector<double>& wellPotentials() { return well_potentials_; }
const std::vector<double>& wellPotentials() const { return well_potentials_; }
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> well_potentials_;
};
} // namespace Opm