Move Dynamic Dispatch Function to Separate TU

This moves about 300 lines of code out of Main.hpp and, especially,
moves the <flow/flow_*.hpp> include statements as well.  This, in
turn, makes Main::runStatic<>() usable for out-of-tree consumers.
This commit is contained in:
Bård Skaflestad 2025-01-29 20:41:12 +01:00
parent caf1723d8f
commit 1bf755f5e8
3 changed files with 528 additions and 330 deletions

View File

@ -105,6 +105,7 @@ list (APPEND MAIN_SOURCE_FILES
opm/simulators/flow/KeywordValidation.cpp opm/simulators/flow/KeywordValidation.cpp
opm/simulators/flow/LogOutputHelper.cpp opm/simulators/flow/LogOutputHelper.cpp
opm/simulators/flow/Main.cpp opm/simulators/flow/Main.cpp
opm/simulators/flow/MainDispatchDynamic.cpp
opm/simulators/flow/MixingRateControls.cpp opm/simulators/flow/MixingRateControls.cpp
opm/simulators/flow/NonlinearSolver.cpp opm/simulators/flow/NonlinearSolver.cpp
opm/simulators/flow/partitionCells.cpp opm/simulators/flow/partitionCells.cpp

View File

@ -23,37 +23,6 @@
#ifndef OPM_MAIN_HEADER_INCLUDED #ifndef OPM_MAIN_HEADER_INCLUDED
#define OPM_MAIN_HEADER_INCLUDED #define OPM_MAIN_HEADER_INCLUDED
#include <flow/flow_blackoil.hpp>
#include <flow/flow_blackoil_legacyassembly.hpp>
#include <flow/flow_gasoil.hpp>
#include <flow/flow_gasoildiffuse.hpp>
#include <flow/flow_gasoil_energy.hpp>
#include <flow/flow_oilwater.hpp>
#include <flow/flow_gaswater.hpp>
#include <flow/flow_gaswater_solvent.hpp>
#include <flow/flow_solvent.hpp>
#include <flow/flow_solvent_foam.hpp>
#include <flow/flow_polymer.hpp>
#include <flow/flow_extbo.hpp>
#include <flow/flow_foam.hpp>
#include <flow/flow_brine.hpp>
#include <flow/flow_brine_saltprecipitation.hpp>
#include <flow/flow_gaswater_saltprec_vapwat.hpp>
#include <flow/flow_gaswater_saltprec_energy.hpp>
#include <flow/flow_brine_precsalt_vapwat.hpp>
#include <flow/flow_onephase.hpp>
#include <flow/flow_onephase_energy.hpp>
#include <flow/flow_oilwater_brine.hpp>
#include <flow/flow_gaswater_brine.hpp>
#include <flow/flow_gaswater_energy.hpp>
#include <flow/flow_gaswater_dissolution.hpp>
#include <flow/flow_gaswater_dissolution_diffuse.hpp>
#include <flow/flow_energy.hpp>
#include <flow/flow_oilwater_polymer.hpp>
#include <flow/flow_oilwater_polymer_injectivity.hpp>
#include <flow/flow_micp.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp> #include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/models/utils/propertysystem.hh> #include <opm/models/utils/propertysystem.hh>
@ -154,6 +123,12 @@ public:
void maybeRedirectReservoirCouplingSlaveOutput_(); void maybeRedirectReservoirCouplingSlaveOutput_();
void initMPI(); void initMPI();
/// Run simulation.
///
/// Selects an appropriate simulator based on runtime information in the
/// input deck.
///
/// \return Simulation's status/exit code.
int runDynamic() int runDynamic()
{ {
int exitCode = EXIT_SUCCESS; int exitCode = EXIT_SUCCESS;
@ -167,6 +142,13 @@ public:
return exitCode; return exitCode;
} }
/// Run simulation.
///
/// Uses staticially configured simulator defined at call site.
///
/// \tparam TypeTag Simulation type's statically configured properties.
///
/// \return Simulation's status/exit code.
template <class TypeTag> template <class TypeTag>
int runStatic() int runStatic()
{ {
@ -188,93 +170,6 @@ public:
return exitCode; return exitCode;
} }
private:
int dispatchDynamic_()
{
const auto& rspec = this->eclipseState_->runspec();
const auto& phases = rspec.phases();
this->setupVanguard();
// run the actual simulator
//
// TODO: make sure that no illegal combinations like thermal and
// twophase are requested.
const bool thermal = eclipseState_->getSimulationConfig().isThermal();
// Single-phase case
if (rspec.micp()) {
return this->runMICP(phases);
}
// water-only case
else if (phases.size() == 1 && phases.active(Phase::WATER) && !thermal) {
return this->runWaterOnly(phases);
}
// water-only case with energy
else if (phases.size() == 2 && phases.active(Phase::WATER) && thermal) {
return this->runWaterOnlyEnergy(phases);
}
// Twophase cases
else if (phases.size() == 2 && !thermal) {
return this->runTwoPhase(phases);
}
// Polymer case
else if (phases.active(Phase::POLYMER)) {
return this->runPolymer(phases);
}
// Foam case
else if (phases.active(Phase::FOAM) && !phases.active(Phase::SOLVENT)) {
return this->runFoam();
}
// Solvent case
else if (phases.active(Phase::SOLVENT)) {
return this->runSolvent(phases);
}
// Brine case
else if (phases.active(Phase::BRINE) && !thermal) {
return this->runBrine(phases);
}
// Extended BO case
else if (phases.active(Phase::ZFRACTION)) {
return this->runExtendedBlackOil();
}
// Energy case
else if (thermal) {
return this->runThermal(phases);
}
// Blackoil case
else if (phases.size() == 3) {
return this->runBlackOil();
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid are "
<< "Twophase, polymer, foam, brine, solvent, "
<< "energy, and blackoil.\n";
}
return EXIT_FAILURE;
}
}
template <class TypeTag>
int dispatchStatic_()
{
this->setupVanguard();
return flowMain<TypeTag>(argc_, argv_, outputCout_, outputFiles_);
}
protected: protected:
/// \brief Initialize /// \brief Initialize
/// \param exitCode The exitCode of the program. /// \param exitCode The exitCode of the program.
@ -462,231 +357,128 @@ private:
// use the parameter system instead. // use the parameter system instead.
void handleTestSplitCommunicatorCmdLine_(); void handleTestSplitCommunicatorCmdLine_();
int runMICP(const Phases& phases) /// Dispatch to actual simulation functions based on input deck's setup.
///
/// Called from runDynamic()
///
/// \return Simulation's status/exit code.
int dispatchDynamic_();
/// Dispatch to actual simulation function based on statically
/// configured simulation type.
///
/// Called from runStatic()
///
/// \tparam TypeTag Simulation type's statically configured properties.
///
/// \return Simulation's status/exit code.
template <class TypeTag>
int dispatchStatic_()
{ {
if (!phases.active(Phase::WATER) || (phases.size() > 2)) { this->setupVanguard();
if (outputCout_) { return flowMain<TypeTag>(argc_, argv_, outputCout_, outputFiles_);
std::cerr << "No valid configuration is found for MICP simulation, "
<< "the only valid option is water + MICP\n";
}
return EXIT_FAILURE;
}
return flowMICPMain(this->argc_,
this->argv_,
this->outputCout_,
this->outputFiles_);
} }
int runTwoPhase(const Phases& phases) /// Run a simulation with MICP effects.
{ ///
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive(); /// Called from dispatchDynamic_()
const bool disgasw = eclipseState_->getSimulationConfig().hasDISGASW(); ///
const bool vapwat = eclipseState_->getSimulationConfig().hasVAPWAT(); /// \param[in] phases Run's active phases. Needed to determine whether
/// or not the run's phase setup is supported.
///
/// \return Simulation's status/exit code.
int runMICP(const Phases& phases);
// oil-gas /// Run a simulation with two active phases.
if (phases.active( Phase::OIL ) && phases.active( Phase::GAS )) { ///
if (diffusive) { /// Called from dispatchDynamic_()
return flowGasOilDiffuseMain(argc_, argv_, outputCout_, outputFiles_); ///
} else { /// \param[in] phases Run's active phases. Needed to determine whether
return flowGasOilMain(argc_, argv_, outputCout_, outputFiles_); /// or not the run's phase setup is supported.
} ///
} /// \return Simulation's status/exit code.
int runTwoPhase(const Phases& phases);
// oil-water /// Run a simulation with polymers.
else if ( phases.active( Phase::OIL ) && phases.active( Phase::WATER ) ) { ///
if (diffusive) { /// Called from dispatchDynamic_()
if (outputCout_) { ///
std::cerr << "The DIFFUSE option is not available for the two-phase water/oil model." << std::endl; /// \param[in] phases Run's active phases. Needed to determine whether
} /// or not the run's phase setup is supported.
return EXIT_FAILURE; ///
} /// \return Simulation's status/exit code.
return flowOilWaterMain(argc_, argv_, outputCout_, outputFiles_); int runPolymer(const Phases& phases);
}
// gas-water /// Run a simulation with foam.
else if ( phases.active( Phase::GAS ) && phases.active( Phase::WATER ) ) { ///
if (disgasw || vapwat) { /// Called from dispatchDynamic_()
if (diffusive) { ///
return flowGasWaterDissolutionDiffuseMain(argc_, argv_, outputCout_, outputFiles_); /// \return Simulation's status/exit code.
} int runFoam();
return flowGasWaterDissolutionMain(argc_, argv_, outputCout_, outputFiles_);
}
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for the two-phase gas/water model without disgasw or vapwat." << std::endl;
}
return EXIT_FAILURE;
}
return flowGasWaterMain(argc_, argv_, outputCout_, outputFiles_); /// Run a single phase, water-only simulation.
} ///
else { /// Called from dispatchDynamic_()
if (outputCout_) { ///
std::cerr << "No suitable configuration found, valid are Twophase (oilwater, oilgas and gaswater), polymer, solvent, or blackoil" << std::endl; /// \param[in] phases Run's active phases. Needed to determine whether
} /// or not the run's phase setup is supported.
///
/// \return Simulation's status/exit code.
int runWaterOnly(const Phases& phases);
return EXIT_FAILURE; /// Run a single phase, water-only simulation with themal/energy effects.
} ///
} /// Called from dispatchDynamic_()
///
/// \param[in] phases Run's active phases. Needed to determine whether
/// or not the run's phase setup is supported.
///
/// \return Simulation's status/exit code.
int runWaterOnlyEnergy(const Phases& phases);
int runPolymer(const Phases& phases) /// Run a simulation with brine, typically in a CCS workflow
{ ///
if (! phases.active(Phase::WATER)) { /// Called from dispatchDynamic_()
if (outputCout_) ///
std::cerr << "No valid configuration is found for polymer simulation, valid options include " /// \param[in] phases Run's active phases. Needed to determine whether
<< "oilwater + polymer and blackoil + polymer" << std::endl; /// or not the run's phase setup is supported.
///
/// \return Simulation's status/exit code.
int runBrine(const Phases& phases);
return EXIT_FAILURE; /// Run a simulation with solvents.
} ///
/// Called from dispatchDynamic_()
///
/// \param[in] phases Run's active phases. Needed to determine whether
/// or not the run's phase setup is supported.
///
/// \return Simulation's status/exit code.
int runSolvent(const Phases& phases);
// Need to track the polymer molecular weight /// Run a simulation with the extended black-oil model.
// for the injectivity study ///
if (phases.active(Phase::POLYMW)) { /// Called from dispatchDynamic_()
// only oil water two phase for now ///
assert (phases.size() == 4); /// \return Simulation's status/exit code.
return flowOilWaterPolymerInjectivityMain(argc_, argv_, outputCout_, outputFiles_); int runExtendedBlackOil();
}
if (phases.size() == 3) { // oil water polymer case /// Run a three-phase simulation with thermal effects.
return flowOilWaterPolymerMain(argc_, argv_, outputCout_, outputFiles_); ///
} /// Called from dispatchDynamic_()
else { ///
return flowPolymerMain(argc_, argv_, outputCout_, outputFiles_); /// \param[in] phases Run's active phases. Needed to determine whether
} /// or not the run's phase setup is supported.
} ///
/// \return Simulation's status/exit code.
int runThermal(const Phases& phases);
int runFoam() /// Run a regular three-phase simulation without thermal effects.
{ ///
return flowFoamMain(argc_, argv_, outputCout_, outputFiles_); /// Called from dispatchDynamic_()
} ///
/// \return Simulation's status/exit code.
int runWaterOnly(const Phases& phases) int runBlackOil();
{
if (!phases.active(Phase::WATER) || phases.size() != 1) {
if (outputCout_)
std::cerr << "No valid configuration is found for water-only simulation, valid options include "
<< "water, water + thermal" << std::endl;
return EXIT_FAILURE;
}
return flowWaterOnlyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runWaterOnlyEnergy(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 2) {
if (outputCout_)
std::cerr << "No valid configuration is found for water-only simulation, valid options include "
<< "water, water + thermal" << std::endl;
return EXIT_FAILURE;
}
return flowWaterOnlyEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runBrine(const Phases& phases)
{
if (! phases.active(Phase::WATER) || phases.size() == 2) {
if (outputCout_)
std::cerr << "No valid configuration is found for brine simulation, valid options include "
<< "oilwater + brine, gaswater + brine and blackoil + brine" << std::endl;
return EXIT_FAILURE;
}
if (phases.size() == 3) {
if (phases.active(Phase::OIL)){ // oil water brine case
return flowOilWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.active(Phase::GAS)){ // gas water brine case
if (eclipseState_->getSimulationConfig().hasPRECSALT() &&
eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowGasWaterSaltprecVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowGasWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
}
}
else if (eclipseState_->getSimulationConfig().hasPRECSALT()) {
if (eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowBrinePrecsaltVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowBrineSaltPrecipitationMain(argc_, argv_, outputCout_, outputFiles_);
}
}
else {
return flowBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
return EXIT_FAILURE;
}
int runSolvent(const Phases& phases)
{
if (phases.active(Phase::FOAM)) {
return flowSolventFoamMain(argc_, argv_, outputCout_, outputFiles_);
}
// solvent + gas + water
if (!phases.active( Phase::OIL ) && phases.active( Phase::WATER ) && phases.active( Phase::GAS )) {
return flowGasWaterSolventMain(argc_, argv_, outputCout_, outputFiles_);
}
// solvent + gas + water + oil
if (phases.active( Phase::OIL ) && phases.active( Phase::WATER ) && phases.active( Phase::GAS )) {
return flowSolventMain(argc_, argv_, outputCout_, outputFiles_);
}
if (outputCout_)
std::cerr << "No valid configuration is found for solvent simulation, valid options include "
<< "gas + water + solvent and gas + oil + water + solvent" << std::endl;
return EXIT_FAILURE;
}
int runExtendedBlackOil()
{
return flowExtboMain(argc_, argv_, outputCout_, outputFiles_);
}
int runThermal(const Phases& phases)
{
// oil-gas-thermal
if (!phases.active( Phase::WATER ) && phases.active( Phase::OIL ) && phases.active( Phase::GAS )) {
return flowGasOilEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
// water-gas-thermal
if (!phases.active( Phase::OIL ) && phases.active( Phase::WATER ) && phases.active( Phase::GAS )) {
if (phases.active(Phase::BRINE)){
return flowGasWaterSaltprecEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowGasWaterEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int runBlackOil()
{
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive();
if (diffusive) {
// Use the traditional linearizer, as the TpfaLinearizer does not
// support the diffusion module yet.
return flowBlackoilMain(argc_, argv_, outputCout_, outputFiles_);
} else {
return flowBlackoilTpfaMain(argc_, argv_, outputCout_, outputFiles_);
}
}
void readDeck(const std::string& deckFilename, void readDeck(const std::string& deckFilename,
const std::string& outputDir, const std::string& outputDir,

View File

@ -0,0 +1,405 @@
/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/flow/Main.hpp>
#include <flow/flow_blackoil.hpp>
#include <flow/flow_blackoil_legacyassembly.hpp>
#include <flow/flow_brine.hpp>
#include <flow/flow_brine_precsalt_vapwat.hpp>
#include <flow/flow_brine_saltprecipitation.hpp>
#include <flow/flow_energy.hpp>
#include <flow/flow_extbo.hpp>
#include <flow/flow_foam.hpp>
#include <flow/flow_gasoil.hpp>
#include <flow/flow_gasoil_energy.hpp>
#include <flow/flow_gasoildiffuse.hpp>
#include <flow/flow_gaswater.hpp>
#include <flow/flow_gaswater_brine.hpp>
#include <flow/flow_gaswater_dissolution.hpp>
#include <flow/flow_gaswater_dissolution_diffuse.hpp>
#include <flow/flow_gaswater_energy.hpp>
#include <flow/flow_gaswater_saltprec_energy.hpp>
#include <flow/flow_gaswater_saltprec_vapwat.hpp>
#include <flow/flow_gaswater_solvent.hpp>
#include <flow/flow_micp.hpp>
#include <flow/flow_oilwater.hpp>
#include <flow/flow_oilwater_brine.hpp>
#include <flow/flow_oilwater_polymer.hpp>
#include <flow/flow_oilwater_polymer_injectivity.hpp>
#include <flow/flow_onephase.hpp>
#include <flow/flow_onephase_energy.hpp>
#include <flow/flow_polymer.hpp>
#include <flow/flow_solvent.hpp>
#include <flow/flow_solvent_foam.hpp>
#include <cstdlib>
#include <iostream>
// ---------------------------------------------------------------------------
// Implementation of dispatchDynamic_()
// ---------------------------------------------------------------------------
int Opm::Main::dispatchDynamic_()
{
const auto& rspec = this->eclipseState_->runspec();
const auto& phases = rspec.phases();
this->setupVanguard();
// run the actual simulator
//
// TODO: make sure that no illegal combinations like thermal and
// twophase are requested.
const bool thermal = eclipseState_->getSimulationConfig().isThermal();
// Single-phase case
if (rspec.micp()) {
return this->runMICP(phases);
}
// water-only case
else if (phases.size() == 1 && phases.active(Phase::WATER) && !thermal) {
return this->runWaterOnly(phases);
}
// water-only case with energy
else if (phases.size() == 2 && phases.active(Phase::WATER) && thermal) {
return this->runWaterOnlyEnergy(phases);
}
// Twophase cases
else if (phases.size() == 2 && !thermal) {
return this->runTwoPhase(phases);
}
// Polymer case
else if (phases.active(Phase::POLYMER)) {
return this->runPolymer(phases);
}
// Foam case
else if (phases.active(Phase::FOAM) && !phases.active(Phase::SOLVENT)) {
return this->runFoam();
}
// Solvent case
else if (phases.active(Phase::SOLVENT)) {
return this->runSolvent(phases);
}
// Brine case
else if (phases.active(Phase::BRINE) && !thermal) {
return this->runBrine(phases);
}
// Extended BO case
else if (phases.active(Phase::ZFRACTION)) {
return this->runExtendedBlackOil();
}
// Energy case
else if (thermal) {
return this->runThermal(phases);
}
// Blackoil case
else if (phases.size() == 3) {
return this->runBlackOil();
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid are "
<< "Twophase, polymer, foam, brine, solvent, "
<< "energy, and blackoil.\n";
}
return EXIT_FAILURE;
}
}
int Opm::Main::runMICP(const Phases& phases)
{
if (!phases.active(Phase::WATER) || (phases.size() > 2)) {
if (outputCout_) {
std::cerr << "No valid configuration is found for MICP simulation, "
<< "the only valid option is water + MICP\n";
}
return EXIT_FAILURE;
}
return flowMICPMain(this->argc_,
this->argv_,
this->outputCout_,
this->outputFiles_);
}
int Opm::Main::runTwoPhase(const Phases& phases)
{
const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive();
const bool disgasw = eclipseState_->getSimulationConfig().hasDISGASW();
const bool vapwat = eclipseState_->getSimulationConfig().hasVAPWAT();
// oil-gas
if (phases.active(Phase::OIL) && phases.active(Phase::GAS)) {
if (diffusive) {
return flowGasOilDiffuseMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowGasOilMain(argc_, argv_, outputCout_, outputFiles_);
}
// oil-water
else if (phases.active(Phase::OIL) && phases.active(Phase::WATER)) {
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for "
"the two-phase water/oil model.\n";
}
return EXIT_FAILURE;
}
return flowOilWaterMain(argc_, argv_, outputCout_, outputFiles_);
}
// gas-water
else if (phases.active(Phase::GAS) && phases.active(Phase::WATER)) {
if (disgasw || vapwat) {
if (diffusive) {
return flowGasWaterDissolutionDiffuseMain(argc_, argv_,
outputCout_,
outputFiles_);
}
return flowGasWaterDissolutionMain(argc_, argv_, outputCout_, outputFiles_);
}
if (diffusive) {
if (outputCout_) {
std::cerr << "The DIFFUSE option is not available for "
"the two-phase gas/water model without "
"disgasw or vapwat.\n";
}
return EXIT_FAILURE;
}
return flowGasWaterMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
if (outputCout_) {
std::cerr << "No suitable configuration found, valid "
"are Twophase (oilwater, oilgas and gaswater), "
"polymer, solvent, or blackoil.\n";
}
return EXIT_FAILURE;
}
}
int Opm::Main::runPolymer(const Phases& phases)
{
if (! phases.active(Phase::WATER)) {
if (outputCout_) {
std::cerr << "No valid configuration is found for polymer "
"simulation, valid options include "
"oilwater + polymer and blackoil + polymer\n";
}
return EXIT_FAILURE;
}
// Need to track the polymer molecular weight
// for the injectivity study
if (phases.active(Phase::POLYMW)) {
// only oil water two phase for now
assert (phases.size() == 4);
return flowOilWaterPolymerInjectivityMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.size() == 3) { // oil water polymer case
return flowOilWaterPolymerMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowPolymerMain(argc_, argv_, outputCout_, outputFiles_);
}
int Opm::Main::runFoam()
{
return flowFoamMain(argc_, argv_, outputCout_, outputFiles_);
}
int Opm::Main::runWaterOnly(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 1) {
if (outputCout_) {
std::cerr << "No valid configuration is found for "
"water-only simulation, valid options include "
"water, water + thermal\n";
}
return EXIT_FAILURE;
}
return flowWaterOnlyMain(argc_, argv_, outputCout_, outputFiles_);
}
int Opm::Main::runWaterOnlyEnergy(const Phases& phases)
{
if (!phases.active(Phase::WATER) || phases.size() != 2) {
if (outputCout_) {
std::cerr << "No valid configuration is found for water-only "
"simulation, valid options include "
"water, water + thermal\n";
}
return EXIT_FAILURE;
}
return flowWaterOnlyEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int Opm::Main::runBrine(const Phases& phases)
{
if (! phases.active(Phase::WATER) || phases.size() == 2) {
if (outputCout_) {
std::cerr << "No valid configuration is found for brine "
"simulation, valid options include "
"oilwater + brine, gaswater + brine "
"and blackoil + brine\n";
}
return EXIT_FAILURE;
}
if (phases.size() == 3) {
if (phases.active(Phase::OIL)) {
// oil water brine case
return flowOilWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
if (phases.active(Phase::GAS)) {
// gas water brine case
if (eclipseState_->getSimulationConfig().hasPRECSALT() &&
eclipseState_->getSimulationConfig().hasVAPWAT())
{
// Case with water vaporization into gas phase and salt precipitation
return flowGasWaterSaltprecVapwatMain(argc_, argv_,
outputCout_,
outputFiles_);
}
else {
return flowGasWaterBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
}
}
else if (eclipseState_->getSimulationConfig().hasPRECSALT()) {
if (eclipseState_->getSimulationConfig().hasVAPWAT()) {
//case with water vaporization into gas phase and salt precipitation
return flowBrinePrecsaltVapwatMain(argc_, argv_, outputCout_, outputFiles_);
}
else {
return flowBrineSaltPrecipitationMain(argc_, argv_, outputCout_, outputFiles_);
}
}
else {
return flowBrineMain(argc_, argv_, outputCout_, outputFiles_);
}
return EXIT_FAILURE;
}
int Opm::Main::runSolvent(const Phases& phases)
{
if (phases.active(Phase::FOAM)) {
return flowSolventFoamMain(argc_, argv_, outputCout_, outputFiles_);
}
// solvent + gas + water
if (!phases.active(Phase::OIL) &&
phases.active(Phase::WATER) &&
phases.active(Phase::GAS))
{
return flowGasWaterSolventMain(argc_, argv_, outputCout_, outputFiles_);
}
// solvent + gas + water + oil
if (phases.active(Phase::OIL) &&
phases.active(Phase::WATER) &&
phases.active(Phase::GAS))
{
return flowSolventMain(argc_, argv_, outputCout_, outputFiles_);
}
if (outputCout_) {
std::cerr << "No valid configuration is found for solvent "
"simulation, valid options include "
"gas + water + solvent and gas + oil + water + solvent\n";
}
return EXIT_FAILURE;
}
int Opm::Main::runExtendedBlackOil()
{
return flowExtboMain(argc_, argv_, outputCout_, outputFiles_);
}
int Opm::Main::runThermal(const Phases& phases)
{
// oil-gas-thermal
if (!phases.active(Phase::WATER) &&
phases.active(Phase::OIL) &&
phases.active( Phase::GAS))
{
return flowGasOilEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
// water-gas-thermal
if (!phases.active(Phase::OIL) &&
phases.active(Phase::WATER) &&
phases.active(Phase::GAS))
{
if (phases.active(Phase::BRINE)) {
return flowGasWaterSaltprecEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowGasWaterEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowEnergyMain(argc_, argv_, outputCout_, outputFiles_);
}
int Opm::Main::runBlackOil()
{
if (this->eclipseState_->getSimulationConfig().isDiffusive()) {
// Use the traditional linearizer, as the TpfaLinearizer does not
// support the diffusion module yet.
return flowBlackoilMain(argc_, argv_, outputCout_, outputFiles_);
}
return flowBlackoilTpfaMain(argc_, argv_, outputCout_, outputFiles_);
}