Merge pull request #1 from atgeirr/performance-mods

Performance mods from atgeirr, great job.
This commit is contained in:
dr-robertk 2014-12-05 14:47:18 +01:00
commit 1cd3dcadc6
6 changed files with 226 additions and 351 deletions

View File

@ -22,9 +22,9 @@
#include <opm/core/utility/platform_dependent/disable_warnings.h> #include <opm/core/utility/platform_dependent/disable_warnings.h>
#include <opm/autodiff/ConservativeSparseSparseProduct.h>
#include <Eigen/Eigen> #include <Eigen/Eigen>
#include <Eigen/Sparse> #include <Eigen/Sparse>
#include <opm/autodiff/fastSparseProduct.hpp>
#include <opm/core/utility/platform_dependent/reenable_warnings.h> #include <opm/core/utility/platform_dependent/reenable_warnings.h>
@ -441,7 +441,8 @@ namespace Opm
std::vector<typename AutoDiffBlock<Scalar>::M> jac(num_blocks); std::vector<typename AutoDiffBlock<Scalar>::M> jac(num_blocks);
assert(lhs.cols() == rhs.value().rows()); assert(lhs.cols() == rhs.value().rows());
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jac[block] = lhs*rhs.derivative()[block]; // jac[block] = lhs*rhs.derivative()[block];
fastSparseProduct(lhs, rhs.derivative()[block], jac[block]);
} }
typename AutoDiffBlock<Scalar>::V val = lhs*rhs.value().matrix(); typename AutoDiffBlock<Scalar>::V val = lhs*rhs.value().matrix();
return AutoDiffBlock<Scalar>::function(val, jac); return AutoDiffBlock<Scalar>::function(val, jac);

View File

@ -392,7 +392,7 @@ namespace Opm
const int num_blocks = pw.numBlocks(); const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * pw.derivative()[block]; fastSparseProduct(dmudp_diag, pw.derivative()[block], jacs[block]);
} }
return ADB::function(mu, jacs); return ADB::function(mu, jacs);
} }
@ -427,7 +427,10 @@ namespace Opm
const int num_blocks = po.numBlocks(); const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * po.derivative()[block] + dmudr_diag * rs.derivative()[block]; fastSparseProduct(dmudp_diag, po.derivative()[block], jacs[block]);
ADB::M temp;
fastSparseProduct(dmudr_diag, rs.derivative()[block], temp);
jacs[block] += temp;
} }
return ADB::function(mu, jacs); return ADB::function(mu, jacs);
} }
@ -458,7 +461,7 @@ namespace Opm
const int num_blocks = pg.numBlocks(); const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * pg.derivative()[block]; fastSparseProduct(dmudp_diag, pg.derivative()[block], jacs[block]);
} }
return ADB::function(mu, jacs); return ADB::function(mu, jacs);
} }
@ -493,7 +496,10 @@ namespace Opm
const int num_blocks = pg.numBlocks(); const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmudp_diag * pg.derivative()[block] + dmudr_diag * rv.derivative()[block]; fastSparseProduct(dmudp_diag, pg.derivative()[block], jacs[block]);
ADB::M temp;
fastSparseProduct(dmudr_diag, rv.derivative()[block], temp);
jacs[block] += temp;
} }
return ADB::function(mu, jacs); return ADB::function(mu, jacs);
} }
@ -653,7 +659,7 @@ namespace Opm
const int num_blocks = pw.numBlocks(); const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * pw.derivative()[block]; fastSparseProduct(dbdp_diag, pw.derivative()[block], jacs[block]);
} }
return ADB::function(b, jacs); return ADB::function(b, jacs);
} }
@ -689,7 +695,10 @@ namespace Opm
const int num_blocks = po.numBlocks(); const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * po.derivative()[block] + dbdr_diag * rs.derivative()[block]; fastSparseProduct(dbdp_diag, po.derivative()[block], jacs[block]);
ADB::M temp;
fastSparseProduct(dbdr_diag, rs.derivative()[block], temp);
jacs[block] += temp;
} }
return ADB::function(b, jacs); return ADB::function(b, jacs);
} }
@ -721,7 +730,7 @@ namespace Opm
const int num_blocks = pg.numBlocks(); const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * pg.derivative()[block]; fastSparseProduct(dbdp_diag, pg.derivative()[block], jacs[block]);
} }
return ADB::function(b, jacs); return ADB::function(b, jacs);
} }
@ -753,11 +762,14 @@ namespace Opm
b.data(), dbdp.data(), dbdr.data()); b.data(), dbdp.data(), dbdr.data());
ADB::M dbdp_diag = spdiag(dbdp); ADB::M dbdp_diag = spdiag(dbdp);
ADB::M dmudr_diag = spdiag(dbdr); ADB::M dbdr_diag = spdiag(dbdr);
const int num_blocks = pg.numBlocks(); const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dbdp_diag * pg.derivative()[block] + dmudr_diag * rv.derivative()[block];; fastSparseProduct(dbdp_diag, pg.derivative()[block], jacs[block]);
ADB::M temp;
fastSparseProduct(dbdr_diag, rv.derivative()[block], temp);
jacs[block] += temp;
} }
return ADB::function(b, jacs); return ADB::function(b, jacs);
} }
@ -817,7 +829,7 @@ namespace Opm
const int num_blocks = po.numBlocks(); const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = drbubdp_diag * po.derivative()[block]; fastSparseProduct(drbubdp_diag, po.derivative()[block], jacs[block]);
} }
return ADB::function(rbub, jacs); return ADB::function(rbub, jacs);
} }
@ -889,7 +901,7 @@ namespace Opm
const int num_blocks = po.numBlocks(); const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = drvdp_diag * po.derivative()[block]; fastSparseProduct(drvdp_diag, po.derivative()[block], jacs[block]);
} }
return ADB::function(rv, jacs); return ADB::function(rv, jacs);
} }
@ -1004,7 +1016,9 @@ namespace Opm
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm() const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column)); ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block]; ADB::M temp;
fastSparseProduct(dkr1_ds2_diag, s[phase2]->derivative()[block], temp);
jacs[block] += temp;
} }
} }
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs)); relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
@ -1062,7 +1076,9 @@ namespace Opm
const int column = phase1_pos + numActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm() const int column = phase1_pos + numActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dpc1_ds2_diag = spdiag(dpc.col(column)); ADB::M dpc1_ds2_diag = spdiag(dpc.col(column));
for (int block = 0; block < numBlocks; ++block) { for (int block = 0; block < numBlocks; ++block) {
jacs[block] += dpc1_ds2_diag * s[phase2]->derivative()[block]; ADB::M temp;
fastSparseProduct(dpc1_ds2_diag, s[phase2]->derivative()[block], temp);
jacs[block] += temp;
} }
} }
adbCapPressures.emplace_back(ADB::function(pc.col(phase1_pos), jacs)); adbCapPressures.emplace_back(ADB::function(pc.col(phase1_pos), jacs));

View File

@ -1,332 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
#warning "Using overloaded Eigen::ConservativeSparseSparseProduct.h"
#include <algorithm>
#include <iterator>
#include <functional>
#include <limits>
#include <vector>
#include <Eigen/Core>
namespace Eigen {
// forward declaration of SparseMatrix
template<typename _Scalar, int _Options, typename _Index>
class SparseMatrix;
namespace internal {
template < unsigned int depth >
struct QuickSort
{
template <typename T>
static inline void sort(T begin, T end)
{
if (begin != end)
{
T middle = std::partition (begin, end,
std::bind2nd(std::less<typename std::iterator_traits<T>::value_type>(), *begin)
);
QuickSort< depth-1 >::sort(begin, middle);
// std::sort (max(begin + 1, middle), end);
T new_middle = begin;
QuickSort< depth-1 >::sort(++new_middle, end);
}
}
};
template <>
struct QuickSort< 0 >
{
template <typename T>
static inline void sort(T begin, T end)
{
// fall back to standard insertion sort
std::sort( begin, end );
}
};
template<typename Lhs, typename Rhs, typename ResultType>
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
// if one of the matrices does not contain non zero elements
// the result will only contain an empty matrix
if( lhs.nonZeros() == 0 || rhs.nonZeros() == 0 )
return ;
typedef typename remove_all<Lhs>::type::Scalar Scalar;
typedef typename remove_all<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
Matrix<Scalar,Dynamic,1> values(rows);
Matrix<Index,Dynamic,1> indices(rows);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
res.setZero();
res.reserve(Index(estimated_nnz_prod));
//const Scalar epsilon = std::numeric_limits< Scalar >::epsilon();
const Scalar epsilon = 1e-15 ;
// we compute each column of the result, one after the other
for (Index j=0; j<cols; ++j)
{
Index nnz = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
const Scalar y = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
const Scalar val = lhsIt.value() * y;
if( std::abs( val ) > epsilon )
{
const Index i = lhsIt.index();
if(!mask[i])
{
mask[i] = true;
values[i] = val;
indices[nnz] = i;
++nnz;
}
else
values[i] += val;
}
}
}
if( nnz > 1 )
{
// sort indices for sorted insertion to avoid later copying
QuickSort< 1 >::sort( indices.data(), indices.data()+nnz );
}
res.startVec(j);
// ordered insertion
// still using insertBackByOuterInnerUnordered since we know what we are doing
for(Index k=0; k<nnz; ++k)
{
const Index i = indices[k];
res.insertBackByOuterInnerUnordered(j,i) = values[i];
mask[i] = false;
}
#if 0
// alternative ordered insertion code:
Index t200 = rows/(log2(200)*1.39);
Index t = (rows*100)/139;
// FIXME reserve nnz non zeros
// FIXME implement fast sort algorithms for very small nnz
// if the result is sparse enough => use a quick sort
// otherwise => loop through the entire vector
// In order to avoid to perform an expensive log2 when the
// result is clearly very sparse we use a linear bound up to 200.
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
//res.startVec(j);
if(true)
{
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
for(Index k=0; k<nnz; ++k)
{
Index i = indices[k];
res.insertBackByOuterInner(j,i) = values[i];
mask[i] = false;
}
}
else
{
// dense path
for(Index i=0; i<rows; ++i)
{
if(mask[i])
{
mask[i] = false;
res.insertBackByOuterInner(j,i) = values[i];
}
}
}
#endif
}
res.finalize();
}
} // end namespace internal
namespace internal {
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
struct conservative_sparse_sparse_product_selector;
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename remove_all<Lhs>::type LhsCleaned;
typedef typename LhsCleaned::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
//typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
//ColMajorMatrix resCol(lhs.rows(),rhs.cols());
res = ColMajorMatrix(lhs.rows(),rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, res);
//internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
// sort the non zeros:
//RowMajorMatrix resRow(resCol);
//res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
//RowMajorMatrix rhsRow = rhs;
//RowMajorMatrix resRow(lhs.rows(), rhs.cols());
ColMajorMatrix lhsCol = lhs;
res = ResultType( lhs.rows(), rhs.cols() );
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix, Rhs, ResultType>( lhsCol, rhs, res );
//internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
//res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
ColMajorMatrix rhsCol = rhs;
res = ResultType( lhs.rows(), rhs.cols() );
internal::conservative_sparse_sparse_product_impl<Lhs, ColMajorMatrix, ResultType>( lhs, rhsCol, res);
/*
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
RowMajorMatrix lhsRow = lhs;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
res = resRow;
*/
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
RowMajorMatrix rhsRow = rhs;
res = ResultType( lhs.rows(), rhs.cols() );
internal::conservative_sparse_sparse_product_impl<Lhs, RowMajorMatrix, ResultType>(rhsRow, lhs, res);
/*
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
ColMajorMatrix lhsCol = lhs;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
res = resCol;
*/
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
RowMajorMatrix lhsRow = lhs;
res = RowMajorMatrix( lhs.rows(), rhs.cols() );
internal::conservative_sparse_sparse_product_impl<Rhs, RowMajorMatrix, ResultType>(rhs, lhsRow, res);
/*
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
ColMajorMatrix rhsCol = rhs;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
res = resCol;
*/
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::Index> RowMajorMatrix;
//typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
res = RowMajorMatrix( lhs.rows(),rhs.cols() );
//RowMajorMatrix resRow(lhs.rows(),rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, res);
// sort the non zeros:
//ColMajorMatrix resCol(resRow);
//res = resCol;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H

View File

@ -2059,7 +2059,7 @@ namespace {
const int num_blocks = p.numBlocks(); const int num_blocks = p.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dpm_diag * p.derivative()[block]; fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]);
} }
return ADB::function(pm, jacs); return ADB::function(pm, jacs);
} else { } else {
@ -2087,7 +2087,7 @@ namespace {
const int num_blocks = p.numBlocks(); const int num_blocks = p.numBlocks();
std::vector<ADB::M> jacs(num_blocks); std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) { for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dtm_diag * p.derivative()[block]; fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]);
} }
return ADB::function(tm, jacs); return ADB::function(tm, jacs);
} else { } else {

View File

@ -279,7 +279,9 @@ namespace Opm
continue; continue;
} }
// solve Du = C // solve Du = C
const M u = Di * Jn[var]; // solver.solve(Jn[var]); // const M u = Di * Jn[var]; // solver.solve(Jn[var]);
M u;
fastSparseProduct(Di, Jn[var], u); // solver.solve(Jn[var]);
for (int eq = 0; eq < num_eq; ++eq) { for (int eq = 0; eq < num_eq; ++eq) {
if (eq == n) { if (eq == n) {
continue; continue;
@ -292,7 +294,9 @@ namespace Opm
jacs[eq].push_back(Je[var]); jacs[eq].push_back(Je[var]);
M& J = jacs[eq].back(); M& J = jacs[eq].back();
// Subtract Bu (B*inv(D)*C) // Subtract Bu (B*inv(D)*C)
J -= B * u; M Bu;
fastSparseProduct(B, u, Bu);
J -= Bu;
} }
} }
@ -397,6 +401,7 @@ namespace Opm
void formEllipticSystem(const int num_phases, void formEllipticSystem(const int num_phases,
const std::vector<ADB>& eqs_in, const std::vector<ADB>& eqs_in,
Eigen::SparseMatrix<double, Eigen::RowMajor>& A, Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
// M& A,
V& b) V& b)
{ {
if (num_phases != 3) { if (num_phases != 3) {

View File

@ -0,0 +1,185 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This file has been modified for use in the OPM project codebase.
#ifndef OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
#define OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED
#include <Eigen/Sparse>
#include <algorithm>
#include <iterator>
#include <functional>
#include <limits>
#include <vector>
#include <Eigen/Core>
namespace Opm {
template < unsigned int depth >
struct QuickSort
{
template <typename T>
static inline void sort(T begin, T end)
{
if (begin != end)
{
T middle = std::partition (begin, end,
std::bind2nd(std::less<typename std::iterator_traits<T>::value_type>(), *begin)
);
QuickSort< depth-1 >::sort(begin, middle);
// std::sort (max(begin + 1, middle), end);
T new_middle = begin;
QuickSort< depth-1 >::sort(++new_middle, end);
}
}
};
template <>
struct QuickSort< 0 >
{
template <typename T>
static inline void sort(T begin, T end)
{
// fall back to standard insertion sort
std::sort( begin, end );
}
};
template<typename Lhs, typename Rhs, typename ResultType>
void fastSparseProduct(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
using namespace Eigen;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::Index> ColMajorMatrix;
res = ColMajorMatrix(lhs.rows(), rhs.cols());
// if one of the matrices does not contain non zero elements
// the result will only contain an empty matrix
if( lhs.nonZeros() == 0 || rhs.nonZeros() == 0 )
return;
typedef typename Eigen::internal::remove_all<Lhs>::type::Scalar Scalar;
typedef typename Eigen::internal::remove_all<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
Matrix<Scalar,Dynamic,1> values(rows);
Matrix<Index,Dynamic,1> indices(rows);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
res.setZero();
res.reserve(Index(estimated_nnz_prod));
//const Scalar epsilon = std::numeric_limits< Scalar >::epsilon();
const Scalar epsilon = 0.0;
// we compute each column of the result, one after the other
for (Index j=0; j<cols; ++j)
{
Index nnz = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
const Scalar y = rhsIt.value();
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
{
const Scalar val = lhsIt.value() * y;
if( std::abs( val ) > epsilon )
{
const Index i = lhsIt.index();
if(!mask[i])
{
mask[i] = true;
values[i] = val;
indices[nnz] = i;
++nnz;
}
else
values[i] += val;
}
}
}
if( nnz > 1 )
{
// sort indices for sorted insertion to avoid later copying
// QuickSort< 1 >::sort( indices.data(), indices.data()+nnz );
std::sort( indices.data(), indices.data()+nnz );
}
res.startVec(j);
// ordered insertion
// still using insertBackByOuterInnerUnordered since we know what we are doing
for(Index k=0; k<nnz; ++k)
{
const Index i = indices[k];
res.insertBackByOuterInnerUnordered(j,i) = values[i];
mask[i] = false;
}
#if 0
// alternative ordered insertion code:
Index t200 = rows/(log2(200)*1.39);
Index t = (rows*100)/139;
// FIXME reserve nnz non zeros
// FIXME implement fast sort algorithms for very small nnz
// if the result is sparse enough => use a quick sort
// otherwise => loop through the entire vector
// In order to avoid to perform an expensive log2 when the
// result is clearly very sparse we use a linear bound up to 200.
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
//res.startVec(j);
if(true)
{
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
for(Index k=0; k<nnz; ++k)
{
Index i = indices[k];
res.insertBackByOuterInner(j,i) = values[i];
mask[i] = false;
}
}
else
{
// dense path
for(Index i=0; i<rows; ++i)
{
if(mask[i])
{
mask[i] = false;
res.insertBackByOuterInner(j,i) = values[i];
}
}
}
#endif
}
res.finalize();
}
} // end namespace Opm
#endif // OPM_FASTSPARSEPRODUCT_HEADER_INCLUDED