mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #381 from atgeirr/refactor-solver
Start refactoring the FullyImplicitBlackoilSolver class
This commit is contained in:
commit
1d2ef11ec7
@ -94,6 +94,8 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/AutoDiffHelpers.hpp
|
||||
opm/autodiff/AutoDiff.hpp
|
||||
opm/autodiff/BackupRestore.hpp
|
||||
opm/autodiff/BlackoilModel.hpp
|
||||
opm/autodiff/BlackoilModel_impl.hpp
|
||||
opm/autodiff/BlackoilPropsAdFromDeck.hpp
|
||||
opm/autodiff/BlackoilPropsAdInterface.hpp
|
||||
opm/autodiff/CPRPreconditioner.hpp
|
||||
@ -108,6 +110,8 @@ list (APPEND PUBLIC_HEADER_FILES
|
||||
opm/autodiff/NewtonIterationBlackoilCPR.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilInterface.hpp
|
||||
opm/autodiff/NewtonIterationBlackoilSimple.hpp
|
||||
opm/autodiff/NewtonSolver.hpp
|
||||
opm/autodiff/NewtonSolver_impl.hpp
|
||||
opm/autodiff/LinearisedBlackoilResidual.hpp
|
||||
opm/autodiff/RateConverter.hpp
|
||||
opm/autodiff/RedistributeDataHandles.hpp
|
||||
|
441
opm/autodiff/BlackoilModel.hpp
Normal file
441
opm/autodiff/BlackoilModel.hpp
Normal file
@ -0,0 +1,441 @@
|
||||
/*
|
||||
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2014, 2015 Statoil ASA.
|
||||
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
|
||||
Copyright 2015 NTNU
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_BLACKOILMODEL_HEADER_INCLUDED
|
||||
#define OPM_BLACKOILMODEL_HEADER_INCLUDED
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
#include <opm/autodiff/LinearisedBlackoilResidual.hpp>
|
||||
#include <opm/autodiff/NewtonIterationBlackoilInterface.hpp>
|
||||
|
||||
#include <array>
|
||||
|
||||
struct UnstructuredGrid;
|
||||
struct Wells;
|
||||
|
||||
namespace Opm {
|
||||
|
||||
namespace parameter { class ParameterGroup; }
|
||||
class DerivedGeology;
|
||||
class RockCompressibility;
|
||||
class NewtonIterationBlackoilInterface;
|
||||
class BlackoilState;
|
||||
class WellStateFullyImplicitBlackoil;
|
||||
|
||||
|
||||
/// A model implementation for three-phase black oil.
|
||||
///
|
||||
/// The simulator is capable of handling three-phase problems
|
||||
/// where gas can be dissolved in oil and vice versa. It
|
||||
/// uses an industry-standard TPFA discretization with per-phase
|
||||
/// upwind weighting of mobilities.
|
||||
///
|
||||
/// It uses automatic differentiation via the class AutoDiffBlock
|
||||
/// to simplify assembly of the jacobian matrix.
|
||||
template<class Grid>
|
||||
class BlackoilModel
|
||||
{
|
||||
public:
|
||||
// --------- Types and enums ---------
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
typedef BlackoilState ReservoirState;
|
||||
typedef WellStateFullyImplicitBlackoil WellState;
|
||||
|
||||
/// Model-specific solver parameters.
|
||||
struct ModelParameters
|
||||
{
|
||||
double dp_max_rel_;
|
||||
double ds_max_;
|
||||
double dr_max_rel_;
|
||||
double max_residual_allowed_;
|
||||
double tolerance_mb_;
|
||||
double tolerance_cnv_;
|
||||
double tolerance_wells_;
|
||||
|
||||
explicit ModelParameters( const parameter::ParameterGroup& param );
|
||||
ModelParameters();
|
||||
|
||||
void reset();
|
||||
};
|
||||
|
||||
// --------- Public methods ---------
|
||||
|
||||
/// Construct the model. It will retain references to the
|
||||
/// arguments of this functions, and they are expected to
|
||||
/// remain in scope for the lifetime of the solver.
|
||||
/// \param[in] param parameters
|
||||
/// \param[in] grid grid data structure
|
||||
/// \param[in] fluid fluid properties
|
||||
/// \param[in] geo rock properties
|
||||
/// \param[in] rock_comp_props if non-null, rock compressibility properties
|
||||
/// \param[in] wells well structure
|
||||
/// \param[in] linsolver linear solver
|
||||
/// \param[in] has_disgas turn on dissolved gas
|
||||
/// \param[in] has_vapoil turn on vaporized oil feature
|
||||
/// \param[in] terminal_output request output to cout/cerr
|
||||
BlackoilModel(const ModelParameters& param,
|
||||
const Grid& grid ,
|
||||
const BlackoilPropsAdInterface& fluid,
|
||||
const DerivedGeology& geo ,
|
||||
const RockCompressibility* rock_comp_props,
|
||||
const Wells* wells,
|
||||
const NewtonIterationBlackoilInterface& linsolver,
|
||||
const bool has_disgas,
|
||||
const bool has_vapoil,
|
||||
const bool terminal_output);
|
||||
|
||||
/// \brief Set threshold pressures that prevent or reduce flow.
|
||||
/// This prevents flow across faces if the potential
|
||||
/// difference is less than the threshold. If the potential
|
||||
/// difference is greater, the threshold value is subtracted
|
||||
/// before calculating flow. This is treated symmetrically, so
|
||||
/// flow is prevented or reduced in both directions equally.
|
||||
/// \param[in] threshold_pressures_by_face array of size equal to the number of faces
|
||||
/// of the grid passed in the constructor.
|
||||
void setThresholdPressures(const std::vector<double>& threshold_pressures_by_face);
|
||||
|
||||
/// Called once before each time step.
|
||||
/// \param[in] dt time step size
|
||||
/// \param[in, out] reservoir_state reservoir state variables
|
||||
/// \param[in, out] well_state well state variables
|
||||
void prepareStep(const double dt,
|
||||
ReservoirState& reservoir_state,
|
||||
WellState& well_state);
|
||||
|
||||
/// Called once after each time step.
|
||||
/// In this class, this function does nothing.
|
||||
/// \param[in] dt time step size
|
||||
/// \param[in, out] reservoir_state reservoir state variables
|
||||
/// \param[in, out] well_state well state variables
|
||||
void afterStep(const double dt,
|
||||
ReservoirState& reservoir_state,
|
||||
WellState& well_state);
|
||||
|
||||
/// Assemble the residual and Jacobian of the nonlinear system.
|
||||
/// \param[in] reservoir_state reservoir state variables
|
||||
/// \param[in, out] well_state well state variables
|
||||
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
|
||||
void assemble(const BlackoilState& reservoir_state,
|
||||
WellStateFullyImplicitBlackoil& well_state,
|
||||
const bool initial_assembly);
|
||||
|
||||
/// \brief Compute the residual norms of the mass balance for each phase,
|
||||
/// the well flux, and the well equation.
|
||||
/// \return a vector that contains for each phase the norm of the mass balance
|
||||
/// and afterwards the norm of the residual of the well flux and the well equation.
|
||||
std::vector<double> computeResidualNorms() const;
|
||||
|
||||
/// The size (number of unknowns) of the nonlinear system of equations.
|
||||
int sizeNonLinear() const;
|
||||
|
||||
/// Number of linear iterations used in last call to solveJacobianSystem().
|
||||
int linearIterationsLastSolve() const;
|
||||
|
||||
/// Solve the Jacobian system Jx = r where J is the Jacobian and
|
||||
/// r is the residual.
|
||||
V solveJacobianSystem() const;
|
||||
|
||||
/// Apply an update to the primary variables, chopped if appropriate.
|
||||
/// \param[in] dx updates to apply to primary variables
|
||||
/// \param[in, out] reservoir_state reservoir state variables
|
||||
/// \param[in, out] well_state well state variables
|
||||
void updateState(const V& dx,
|
||||
BlackoilState& reservoir_state,
|
||||
WellStateFullyImplicitBlackoil& well_state);
|
||||
|
||||
/// Return true if output to cout is wanted.
|
||||
bool terminalOutputEnabled() const;
|
||||
|
||||
/// Compute convergence based on total mass balance (tol_mb) and maximum
|
||||
/// residual mass balance (tol_cnv).
|
||||
/// \param[in] dt timestep length
|
||||
/// \param[in] iteration current iteration number
|
||||
bool getConvergence(const double dt, const int iteration);
|
||||
|
||||
/// The number of active phases in the model.
|
||||
int numPhases() const;
|
||||
|
||||
private:
|
||||
|
||||
// --------- Types and enums ---------
|
||||
|
||||
typedef Eigen::Array<double,
|
||||
Eigen::Dynamic,
|
||||
Eigen::Dynamic,
|
||||
Eigen::RowMajor> DataBlock;
|
||||
|
||||
struct ReservoirResidualQuant {
|
||||
ReservoirResidualQuant();
|
||||
std::vector<ADB> accum; // Accumulations
|
||||
ADB mflux; // Mass flux (surface conditions)
|
||||
ADB b; // Reciprocal FVF
|
||||
ADB head; // Pressure drop across int. interfaces
|
||||
ADB mob; // Phase mobility (per cell)
|
||||
};
|
||||
|
||||
struct SolutionState {
|
||||
SolutionState(const int np);
|
||||
ADB pressure;
|
||||
ADB temperature;
|
||||
std::vector<ADB> saturation;
|
||||
ADB rs;
|
||||
ADB rv;
|
||||
ADB qs;
|
||||
ADB bhp;
|
||||
// Below are quantities stored in the state for optimization purposes.
|
||||
std::vector<ADB> canonical_phase_pressures; // Always has 3 elements, even if only 2 phases active.
|
||||
};
|
||||
|
||||
struct WellOps {
|
||||
WellOps(const Wells* wells);
|
||||
M w2p; // well -> perf (scatter)
|
||||
M p2w; // perf -> well (gather)
|
||||
};
|
||||
|
||||
enum { Water = BlackoilPropsAdInterface::Water,
|
||||
Oil = BlackoilPropsAdInterface::Oil ,
|
||||
Gas = BlackoilPropsAdInterface::Gas ,
|
||||
MaxNumPhases = BlackoilPropsAdInterface::MaxNumPhases
|
||||
};
|
||||
|
||||
enum PrimalVariables { Sg = 0, RS = 1, RV = 2 };
|
||||
|
||||
// --------- Data members ---------
|
||||
|
||||
const Grid& grid_;
|
||||
const BlackoilPropsAdInterface& fluid_;
|
||||
const DerivedGeology& geo_;
|
||||
const RockCompressibility* rock_comp_props_;
|
||||
const Wells* wells_;
|
||||
const NewtonIterationBlackoilInterface& linsolver_;
|
||||
// For each canonical phase -> true if active
|
||||
const std::vector<bool> active_;
|
||||
// Size = # active phases. Maps active -> canonical phase indices.
|
||||
const std::vector<int> canph_;
|
||||
const std::vector<int> cells_; // All grid cells
|
||||
HelperOps ops_;
|
||||
const WellOps wops_;
|
||||
const bool has_disgas_;
|
||||
const bool has_vapoil_;
|
||||
|
||||
ModelParameters param_;
|
||||
bool use_threshold_pressure_;
|
||||
V threshold_pressures_by_interior_face_;
|
||||
|
||||
std::vector<ReservoirResidualQuant> rq_;
|
||||
std::vector<PhasePresence> phaseCondition_;
|
||||
V well_perforation_pressure_diffs_; // Diff to bhp for each well perforation.
|
||||
|
||||
LinearisedBlackoilResidual residual_;
|
||||
|
||||
/// \brief Whether we print something to std::cout
|
||||
bool terminal_output_;
|
||||
|
||||
std::vector<int> primalVariable_;
|
||||
V pvdt_;
|
||||
|
||||
// --------- Private methods ---------
|
||||
|
||||
// return true if wells are available
|
||||
bool wellsActive() const { return wells_ ? wells_->number_of_wells > 0 : false ; }
|
||||
// return wells object
|
||||
const Wells& wells () const { assert( bool(wells_ != 0) ); return *wells_; }
|
||||
|
||||
SolutionState
|
||||
constantState(const BlackoilState& x,
|
||||
const WellStateFullyImplicitBlackoil& xw) const;
|
||||
|
||||
void
|
||||
makeConstantState(SolutionState& state) const;
|
||||
|
||||
SolutionState
|
||||
variableState(const BlackoilState& x,
|
||||
const WellStateFullyImplicitBlackoil& xw) const;
|
||||
|
||||
void
|
||||
computeAccum(const SolutionState& state,
|
||||
const int aix );
|
||||
|
||||
void computeWellConnectionPressures(const SolutionState& state,
|
||||
const WellStateFullyImplicitBlackoil& xw);
|
||||
|
||||
void
|
||||
addWellControlEq(const SolutionState& state,
|
||||
const WellStateFullyImplicitBlackoil& xw,
|
||||
const V& aliveWells);
|
||||
|
||||
void
|
||||
addWellEq(const SolutionState& state,
|
||||
WellStateFullyImplicitBlackoil& xw,
|
||||
V& aliveWells);
|
||||
|
||||
void updateWellControls(WellStateFullyImplicitBlackoil& xw) const;
|
||||
|
||||
std::vector<ADB>
|
||||
computePressures(const SolutionState& state) const;
|
||||
|
||||
std::vector<ADB>
|
||||
computePressures(const ADB& po,
|
||||
const ADB& sw,
|
||||
const ADB& so,
|
||||
const ADB& sg) const;
|
||||
|
||||
V
|
||||
computeGasPressure(const V& po,
|
||||
const V& sw,
|
||||
const V& so,
|
||||
const V& sg) const;
|
||||
|
||||
std::vector<ADB>
|
||||
computeRelPerm(const SolutionState& state) const;
|
||||
|
||||
void
|
||||
computeMassFlux(const int actph ,
|
||||
const V& transi,
|
||||
const ADB& kr ,
|
||||
const ADB& p ,
|
||||
const SolutionState& state );
|
||||
|
||||
void applyThresholdPressures(ADB& dp);
|
||||
|
||||
ADB
|
||||
fluidViscosity(const int phase,
|
||||
const ADB& p ,
|
||||
const ADB& temp ,
|
||||
const ADB& rs ,
|
||||
const ADB& rv ,
|
||||
const std::vector<PhasePresence>& cond,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
fluidReciprocFVF(const int phase,
|
||||
const ADB& p ,
|
||||
const ADB& temp ,
|
||||
const ADB& rs ,
|
||||
const ADB& rv ,
|
||||
const std::vector<PhasePresence>& cond,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
fluidDensity(const int phase,
|
||||
const ADB& p ,
|
||||
const ADB& temp ,
|
||||
const ADB& rs ,
|
||||
const ADB& rv ,
|
||||
const std::vector<PhasePresence>& cond,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
V
|
||||
fluidRsSat(const V& p,
|
||||
const V& so,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
fluidRsSat(const ADB& p,
|
||||
const ADB& so,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
V
|
||||
fluidRvSat(const V& p,
|
||||
const V& so,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
fluidRvSat(const ADB& p,
|
||||
const ADB& so,
|
||||
const std::vector<int>& cells) const;
|
||||
|
||||
ADB
|
||||
poroMult(const ADB& p) const;
|
||||
|
||||
ADB
|
||||
transMult(const ADB& p) const;
|
||||
|
||||
void
|
||||
classifyCondition(const SolutionState& state,
|
||||
std::vector<PhasePresence>& cond ) const;
|
||||
|
||||
const std::vector<PhasePresence>
|
||||
phaseCondition() const {return phaseCondition_;}
|
||||
|
||||
void
|
||||
classifyCondition(const BlackoilState& state);
|
||||
|
||||
|
||||
/// update the primal variable for Sg, Rv or Rs. The Gas phase must
|
||||
/// be active to call this method.
|
||||
void
|
||||
updatePrimalVariableFromState(const BlackoilState& state);
|
||||
|
||||
/// Update the phaseCondition_ member based on the primalVariable_ member.
|
||||
void
|
||||
updatePhaseCondFromPrimalVariable();
|
||||
|
||||
/// \brief Compute the reduction within the convergence check.
|
||||
/// \param[in] B A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. B.col(i) contains the values
|
||||
/// for phase i.
|
||||
/// \param[in] tempV A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. tempV.col(i) contains the
|
||||
/// values
|
||||
/// for phase i.
|
||||
/// \param[in] R A matrix with MaxNumPhases columns and the same number rows
|
||||
/// as the number of cells of the grid. B.col(i) contains the values
|
||||
/// for phase i.
|
||||
/// \param[out] R_sum An array of size MaxNumPhases where entry i contains the sum
|
||||
/// of R for the phase i.
|
||||
/// \param[out] maxCoeff An array of size MaxNumPhases where entry i contains the
|
||||
/// maximum of tempV for the phase i.
|
||||
/// \param[out] B_avg An array of size MaxNumPhases where entry i contains the average
|
||||
/// of B for the phase i.
|
||||
/// \param[out] maxNormWell The maximum of the well equations for each phase.
|
||||
/// \param[in] nc The number of cells of the local grid.
|
||||
/// \param[in] nw The number of wells on the local grid.
|
||||
/// \return The total pore volume over all cells.
|
||||
double
|
||||
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& B,
|
||||
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& tempV,
|
||||
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases>& R,
|
||||
std::array<double,MaxNumPhases>& R_sum,
|
||||
std::array<double,MaxNumPhases>& maxCoeff,
|
||||
std::array<double,MaxNumPhases>& B_avg,
|
||||
std::vector<double>& maxNormWell,
|
||||
int nc,
|
||||
int nw) const;
|
||||
|
||||
double dpMaxRel() const { return param_.dp_max_rel_; }
|
||||
double dsMax() const { return param_.ds_max_; }
|
||||
double drMaxRel() const { return param_.dr_max_rel_; }
|
||||
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
|
||||
|
||||
};
|
||||
} // namespace Opm
|
||||
|
||||
#include "BlackoilModel_impl.hpp"
|
||||
|
||||
#endif // OPM_BLACKOILMODEL_HEADER_INCLUDED
|
2309
opm/autodiff/BlackoilModel_impl.hpp
Normal file
2309
opm/autodiff/BlackoilModel_impl.hpp
Normal file
File diff suppressed because it is too large
Load Diff
119
opm/autodiff/NewtonSolver.hpp
Normal file
119
opm/autodiff/NewtonSolver.hpp
Normal file
@ -0,0 +1,119 @@
|
||||
/*
|
||||
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2015 Statoil ASA.
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_NEWTONSOLVER_HEADER_INCLUDED
|
||||
#define OPM_NEWTONSOLVER_HEADER_INCLUDED
|
||||
|
||||
#include <opm/autodiff/AutoDiffBlock.hpp>
|
||||
#include <opm/core/utility/parameters/ParameterGroup.hpp>
|
||||
|
||||
namespace Opm {
|
||||
|
||||
|
||||
/// A Newton solver class suitable for general fully-implicit models.
|
||||
template <class PhysicalModel>
|
||||
class NewtonSolver
|
||||
{
|
||||
public:
|
||||
// --------- Types and enums ---------
|
||||
typedef AutoDiffBlock<double> ADB;
|
||||
typedef ADB::V V;
|
||||
typedef ADB::M M;
|
||||
|
||||
// The Newton relaxation scheme type
|
||||
enum RelaxType { DAMPEN, SOR };
|
||||
|
||||
// Solver parameters controlling nonlinear Newton process.
|
||||
struct SolverParameters
|
||||
{
|
||||
enum RelaxType relax_type_;
|
||||
double relax_max_;
|
||||
double relax_increment_;
|
||||
double relax_rel_tol_;
|
||||
int max_iter_; // max newton iterations
|
||||
int min_iter_; // min newton iterations
|
||||
|
||||
explicit SolverParameters( const parameter::ParameterGroup& param );
|
||||
SolverParameters();
|
||||
|
||||
void reset();
|
||||
};
|
||||
|
||||
// Forwarding types from PhysicalModel.
|
||||
typedef typename PhysicalModel::ReservoirState ReservoirState;
|
||||
typedef typename PhysicalModel::WellState WellState;
|
||||
|
||||
// --------- Public methods ---------
|
||||
|
||||
/// Construct solver for a given model.
|
||||
/// \param[in] param parameters controlling nonlinear Newton process
|
||||
/// \param[in, out] model physical simulation model
|
||||
explicit NewtonSolver(const SolverParameters& param,
|
||||
PhysicalModel& model);
|
||||
|
||||
/// Take a single forward step, after which the states will be modified
|
||||
/// according to the physical model.
|
||||
/// \param[in] dt time step size
|
||||
/// \param[in] reservoir_state reservoir state variables
|
||||
/// \param[in] well_state well state variables
|
||||
/// \return number of linear iterations used
|
||||
int
|
||||
step(const double dt,
|
||||
ReservoirState& reservoir_state,
|
||||
WellState& well_state);
|
||||
|
||||
/// Number of Newton iterations used in all calls to step().
|
||||
unsigned int newtonIterations() const;
|
||||
|
||||
/// Number of linear solver iterations used in all calls to step().
|
||||
unsigned int linearIterations() const;
|
||||
|
||||
/// Number of linear solver iterations used in the last call to step().
|
||||
unsigned int newtonIterationsLastStep() const;
|
||||
|
||||
/// Number of linear solver iterations used in the last call to step().
|
||||
unsigned int linearIterationsLastStep() const;
|
||||
|
||||
private:
|
||||
// --------- Data members ---------
|
||||
SolverParameters param_;
|
||||
PhysicalModel& model_;
|
||||
unsigned int newtonIterations_;
|
||||
unsigned int linearIterations_;
|
||||
unsigned int newtonIterationsLast_;
|
||||
unsigned int linearIterationsLast_;
|
||||
|
||||
// --------- Private methods ---------
|
||||
enum RelaxType relaxType() const { return param_.relax_type_; }
|
||||
double relaxMax() const { return param_.relax_max_; }
|
||||
double relaxIncrement() const { return param_.relax_increment_; }
|
||||
double relaxRelTol() const { return param_.relax_rel_tol_; }
|
||||
double maxIter() const { return param_.max_iter_; }
|
||||
double minIter() const { return param_.min_iter_; }
|
||||
void detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
|
||||
const int it, const double relaxRelTol,
|
||||
bool& oscillate, bool& stagnate) const;
|
||||
void stabilizeNewton(V& dx, V& dxOld, const double omega, const RelaxType relax_type) const;
|
||||
};
|
||||
} // namespace Opm
|
||||
|
||||
#include "NewtonSolver_impl.hpp"
|
||||
|
||||
#endif // OPM_NEWTONSOLVER_HEADER_INCLUDED
|
250
opm/autodiff/NewtonSolver_impl.hpp
Normal file
250
opm/autodiff/NewtonSolver_impl.hpp
Normal file
@ -0,0 +1,250 @@
|
||||
/*
|
||||
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
||||
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
||||
Copyright 2015 NTNU
|
||||
Copyright 2015 IRIS AS
|
||||
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef OPM_NEWTONSOLVER_IMPL_HEADER_INCLUDED
|
||||
#define OPM_NEWTONSOLVER_IMPL_HEADER_INCLUDED
|
||||
|
||||
#include <opm/autodiff/NewtonSolver.hpp>
|
||||
|
||||
namespace Opm
|
||||
{
|
||||
template <class PhysicalModel>
|
||||
NewtonSolver<PhysicalModel>::NewtonSolver(const SolverParameters& param,
|
||||
PhysicalModel& model)
|
||||
: param_(param),
|
||||
model_(model),
|
||||
newtonIterations_(0),
|
||||
linearIterations_(0)
|
||||
{
|
||||
}
|
||||
|
||||
template <class PhysicalModel>
|
||||
unsigned int NewtonSolver<PhysicalModel>::newtonIterations () const
|
||||
{
|
||||
return newtonIterations_;
|
||||
}
|
||||
|
||||
template <class PhysicalModel>
|
||||
unsigned int NewtonSolver<PhysicalModel>::linearIterations () const
|
||||
{
|
||||
return linearIterations_;
|
||||
}
|
||||
|
||||
|
||||
template <class PhysicalModel>
|
||||
int
|
||||
NewtonSolver<PhysicalModel>::
|
||||
step(const double dt,
|
||||
ReservoirState& reservoir_state,
|
||||
WellState& well_state)
|
||||
{
|
||||
// Do model-specific once-per-step calculations.
|
||||
model_.prepareStep(dt, reservoir_state, well_state);
|
||||
|
||||
// For each iteration we store in a vector the norms of the residual of
|
||||
// the mass balance for each active phase, the well flux and the well equations.
|
||||
std::vector<std::vector<double>> residual_norms_history;
|
||||
|
||||
// Assemble residual and Jacobian, store residual norms.
|
||||
model_.assemble(reservoir_state, well_state, true);
|
||||
residual_norms_history.push_back(model_.computeResidualNorms());
|
||||
|
||||
// Set up for main Newton loop.
|
||||
double omega = 1.0;
|
||||
int iteration = 0;
|
||||
bool converged = model_.getConvergence(dt, iteration);
|
||||
const int sizeNonLinear = model_.sizeNonLinear();
|
||||
V dxOld = V::Zero(sizeNonLinear);
|
||||
bool isOscillate = false;
|
||||
bool isStagnate = false;
|
||||
const enum RelaxType relaxtype = relaxType();
|
||||
int linearIterations = 0;
|
||||
|
||||
// ---------- Main Newton loop ----------
|
||||
while ( (!converged && (iteration < maxIter())) || (minIter() > iteration)) {
|
||||
// Compute the Newton update to the primary variables.
|
||||
V dx = model_.solveJacobianSystem();
|
||||
|
||||
// Store number of linear iterations used.
|
||||
linearIterations += model_.linearIterationsLastSolve();
|
||||
|
||||
// Stabilize the Newton update.
|
||||
detectNewtonOscillations(residual_norms_history, iteration, relaxRelTol(), isOscillate, isStagnate);
|
||||
if (isOscillate) {
|
||||
omega -= relaxIncrement();
|
||||
omega = std::max(omega, relaxMax());
|
||||
if (model_.terminalOutputEnabled()) {
|
||||
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
|
||||
}
|
||||
}
|
||||
stabilizeNewton(dx, dxOld, omega, relaxtype);
|
||||
|
||||
// Apply the update, the model may apply model-dependent
|
||||
// limitations and chopping of the update.
|
||||
model_.updateState(dx, reservoir_state, well_state);
|
||||
|
||||
// Assemble residual and Jacobian, store residual norms.
|
||||
model_.assemble(reservoir_state, well_state, false);
|
||||
residual_norms_history.push_back(model_.computeResidualNorms());
|
||||
|
||||
// increase iteration counter
|
||||
++iteration;
|
||||
|
||||
converged = model_.getConvergence(dt, iteration);
|
||||
}
|
||||
|
||||
if (!converged) {
|
||||
if (model_.terminalOutputEnabled()) {
|
||||
std::cerr << "WARNING: Failed to compute converged solution in " << iteration << " iterations." << std::endl;
|
||||
}
|
||||
return -1; // -1 indicates that the solver has to be restarted
|
||||
}
|
||||
|
||||
linearIterations_ += linearIterations;
|
||||
newtonIterations_ += iteration;
|
||||
linearIterationsLast_ = linearIterations;
|
||||
newtonIterationsLast_ = iteration;
|
||||
|
||||
// Do model-specific post-step actions.
|
||||
model_.afterStep(dt, reservoir_state, well_state);
|
||||
|
||||
return linearIterations;
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class PhysicalModel>
|
||||
void NewtonSolver<PhysicalModel>::SolverParameters::
|
||||
reset()
|
||||
{
|
||||
// default values for the solver parameters
|
||||
relax_type_ = DAMPEN;
|
||||
relax_max_ = 0.5;
|
||||
relax_increment_ = 0.1;
|
||||
relax_rel_tol_ = 0.2;
|
||||
max_iter_ = 15;
|
||||
min_iter_ = 1;
|
||||
}
|
||||
|
||||
template <class PhysicalModel>
|
||||
NewtonSolver<PhysicalModel>::SolverParameters::
|
||||
SolverParameters()
|
||||
{
|
||||
// set default values
|
||||
reset();
|
||||
}
|
||||
|
||||
template <class PhysicalModel>
|
||||
NewtonSolver<PhysicalModel>::SolverParameters::
|
||||
SolverParameters( const parameter::ParameterGroup& param )
|
||||
{
|
||||
// set default values
|
||||
reset();
|
||||
|
||||
// overload with given parameters
|
||||
relax_max_ = param.getDefault("relax_max", relax_max_);
|
||||
max_iter_ = param.getDefault("max_iter", max_iter_);
|
||||
min_iter_ = param.getDefault("min_iter", min_iter_);
|
||||
|
||||
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
|
||||
if (relaxation_type == "dampen") {
|
||||
relax_type_ = DAMPEN;
|
||||
} else if (relaxation_type == "sor") {
|
||||
relax_type_ = SOR;
|
||||
} else {
|
||||
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
|
||||
}
|
||||
}
|
||||
|
||||
template <class PhysicalModel>
|
||||
void
|
||||
NewtonSolver<PhysicalModel>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
|
||||
const int it, const double relaxRelTol,
|
||||
bool& oscillate, bool& stagnate) const
|
||||
{
|
||||
// The detection of oscillation in two primary variable results in the report of the detection
|
||||
// of oscillation for the solver.
|
||||
// Only the saturations are used for oscillation detection for the black oil model.
|
||||
// Stagnate is not used for any treatment here.
|
||||
|
||||
if ( it < 2 ) {
|
||||
oscillate = false;
|
||||
stagnate = false;
|
||||
return;
|
||||
}
|
||||
|
||||
stagnate = true;
|
||||
int oscillatePhase = 0;
|
||||
const std::vector<double>& F0 = residual_history[it];
|
||||
const std::vector<double>& F1 = residual_history[it - 1];
|
||||
const std::vector<double>& F2 = residual_history[it - 2];
|
||||
for (int p= 0; p < model_.numPhases(); ++p){
|
||||
const double d1 = std::abs((F0[p] - F2[p]) / F0[p]);
|
||||
const double d2 = std::abs((F0[p] - F1[p]) / F0[p]);
|
||||
|
||||
oscillatePhase += (d1 < relaxRelTol) && (relaxRelTol < d2);
|
||||
|
||||
// Process is 'stagnate' unless at least one phase
|
||||
// exhibits significant residual change.
|
||||
stagnate = (stagnate && !(std::abs((F1[p] - F2[p]) / F2[p]) > 1.0e-3));
|
||||
}
|
||||
|
||||
oscillate = (oscillatePhase > 1);
|
||||
}
|
||||
|
||||
|
||||
template <class PhysicalModel>
|
||||
void
|
||||
NewtonSolver<PhysicalModel>::stabilizeNewton(V& dx, V& dxOld, const double omega,
|
||||
const RelaxType relax_type) const
|
||||
{
|
||||
// The dxOld is updated with dx.
|
||||
// If omega is equal to 1., no relaxtion will be appiled.
|
||||
|
||||
const V tempDxOld = dxOld;
|
||||
dxOld = dx;
|
||||
|
||||
switch (relax_type) {
|
||||
case DAMPEN:
|
||||
if (omega == 1.) {
|
||||
return;
|
||||
}
|
||||
dx = dx*omega;
|
||||
return;
|
||||
case SOR:
|
||||
if (omega == 1.) {
|
||||
return;
|
||||
}
|
||||
dx = dx*omega + (1.-omega)*tempDxOld;
|
||||
return;
|
||||
default:
|
||||
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
|
||||
#endif // OPM_FULLYIMPLICITSOLVER_IMPL_HEADER_INCLUDED
|
@ -24,7 +24,8 @@
|
||||
#include <opm/core/utility/ErrorMacros.hpp>
|
||||
|
||||
#include <opm/autodiff/GeoProps.hpp>
|
||||
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
|
||||
#include <opm/autodiff/NewtonSolver.hpp>
|
||||
#include <opm/autodiff/BlackoilModel.hpp>
|
||||
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
||||
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
||||
#include <opm/autodiff/RateConverter.hpp>
|
||||
@ -231,7 +232,13 @@ namespace Opm
|
||||
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
|
||||
std::ofstream tstep_os(tstep_filename.c_str());
|
||||
|
||||
typename FullyImplicitBlackoilSolver<T>::SolverParameter solverParam( param_ );
|
||||
typedef T Grid;
|
||||
typedef BlackoilModel<Grid> Model;
|
||||
typedef typename Model::ModelParameters ModelParams;
|
||||
ModelParams modelParams( param_ );
|
||||
typedef NewtonSolver<Model> Solver;
|
||||
typedef typename Solver::SolverParameters SolverParams;
|
||||
SolverParams solverParams( param_ );
|
||||
|
||||
// adaptive time stepping
|
||||
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
|
||||
@ -291,10 +298,11 @@ namespace Opm
|
||||
// Run a multiple steps of the solver depending on the time step control.
|
||||
solver_timer.start();
|
||||
|
||||
FullyImplicitBlackoilSolver<T> solver(solverParam, grid_, props_, geo_, rock_comp_props_, wells, solver_, has_disgas_, has_vapoil_, terminal_output_);
|
||||
Model model(modelParams, grid_, props_, geo_, rock_comp_props_, wells, solver_, has_disgas_, has_vapoil_, terminal_output_);
|
||||
if (!threshold_pressures_by_face_.empty()) {
|
||||
solver.setThresholdPressures(threshold_pressures_by_face_);
|
||||
model.setThresholdPressures(threshold_pressures_by_face_);
|
||||
}
|
||||
Solver solver(solverParams, model);
|
||||
|
||||
// If sub stepping is enabled allow the solver to sub cycle
|
||||
// in case the report steps are to large for the solver to converge
|
||||
|
Loading…
Reference in New Issue
Block a user