Refactor computeMassFlux().

This commit is contained in:
Atgeirr Flø Rasmussen 2015-05-26 17:04:33 +02:00
parent 2ddfe91504
commit 1dcffe4b18

View File

@ -343,46 +343,32 @@ namespace Opm {
const ADB& phasePressure,
const SolutionState& state)
{
// Compute and store mobilities.
Base::computeMassFlux(actph, transi, kr, phasePressure, state);
// Polymer treatment.
const int canonicalPhaseIdx = canph_[ actph ];
if (canonicalPhaseIdx == Water) {
if (has_polymer_) {
const std::vector<PhasePresence>& cond = phaseCondition();
const ADB tr_mult = transMult(state.pressure);
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv, cond, cells_);
rq_[ actph ].mob = tr_mult * kr / mu;
// Compute head differentials. Gravity potential is done using the face average as in eclipse and MRST.
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.temperature, state.rs, state.rv, cond, cells_);
const ADB rhoavg = ops_.caver * rho;
rq_[ actph ].dh = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
if (use_threshold_pressure_) {
applyThresholdPressures(rq_[ actph ].dh);
}
// Polymer treatment.
if (canonicalPhaseIdx == Water) {
if(has_polymer_) {
const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern());
const ADB mc = computeMc(state);
ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration,
cmax,
kr,
state.saturation[canonicalPhaseIdx]);
ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration, cmax, kr, state.saturation[actph]);
const ADB inv_wat_eff_visc = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu.value().data());
// Reduce mobility of water phase by relperm reduction and effective viscosity increase.
rq_[actph].mob = tr_mult * krw_eff * inv_wat_eff_visc;
// Compute polymer mobility.
rq_[poly_pos_].mob = tr_mult * mc * krw_eff * inv_wat_eff_visc;
rq_[poly_pos_].b = rq_[actph].b;
rq_[poly_pos_].dh = rq_[actph].dh;
UpwindSelector<double> upwind(grid_, ops_, rq_[poly_pos_].dh.value());
// Compute polymer flux.
rq_[poly_pos_].mflux = upwind.select(rq_[poly_pos_].b * rq_[poly_pos_].mob) * (transi * rq_[poly_pos_].dh);
// Must recompute water flux since we have to use modified mobilities.
rq_[ actph ].mflux = upwind.select(rq_[actph].b * rq_[actph].mob) * (transi * rq_[actph].dh);
}
}
// Compute phase fluxes with upwinding of formation value factor and mobility.
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
const ADB& dh = rq_[ actph ].dh;
UpwindSelector<double> upwind(grid_, ops_, dh.value());
rq_[ actph ].mflux = upwind.select(b * mob) * (transi * dh);
}