Make polymer_reorder.cpp compliant with well management. Not tested!

This commit is contained in:
Xavier Raynaud 2012-05-10 14:42:08 +02:00
parent 0a0ca3bbd3
commit 1eb75314e6
3 changed files with 164 additions and 63 deletions

View File

@ -131,6 +131,19 @@ static void outputWaterCut(const Opm::Watercut& watercut,
}
static void outputWellReport(const Opm::WellReport& wellreport,
const std::string& output_dir)
{
// Write well report.
std::string fname = output_dir + "/wellreport.txt";
std::ofstream os(fname.c_str());
if (!os) {
THROW("Failed to open " << fname);
}
wellreport.write(os);
}
// --------------- Types needed to define transport solver ---------------
@ -189,13 +202,13 @@ public:
const double* visc = props_.viscosity();
double relperm[2];
double drelpermds[4];
props_.relperm(1, &s[0], &cell, relperm, drelpermds);
props_.relperm(1, &s[0], &cell, relperm, drelpermds);
polyprops_.effectiveMobilitiesWithDer(c, cmax, visc, relperm, drelpermds, mob, dmobds, dmobwatdc);
}
template <class Sat,
class Pcap,
class DPcap>
class Pcap,
class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const
{
double pcow[2];
@ -224,7 +237,7 @@ public:
class Mc,
class DMcDc>
void computeMc(const PolyC& c, Mc& mc,
DMcDc& dmcdc) const
DMcDc& dmcdc) const
{
polyprops_.computeMcWithDer(c, mc, dmcdc);
}
@ -254,12 +267,12 @@ public:
};
typedef Opm::ImplicitTransport<NewtonPolymerTransportModel,
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
@ -300,6 +313,7 @@ main(int argc, char** argv)
// Reading various control parameters.
const bool guess_old_solution = param.getDefault("guess_old_solution", false);
const bool use_reorder = param.getDefault("use_reorder", true);
const bool output = param.getDefault("output", true);
std::string output_dir;
int output_interval = 1;
@ -326,6 +340,8 @@ main(int argc, char** argv)
Opm::SimulatorTimer simtimer;
Opm::PolymerState state;
Opm::PolymerProperties polyprop;
bool check_well_controls = false;
int max_well_control_iterations = 0;
double gravity[3] = { 0.0 };
if (use_deck) {
std::string deck_filename = param.get<std::string>("deck_filename");
@ -338,6 +354,8 @@ main(int argc, char** argv)
props.reset(new Opm::IncompPropertiesFromDeck(deck, global_cell));
// Wells init.
wells.reset(new Opm::WellsManager(deck, *grid->c_grid(), props->permeability()));
check_well_controls = param.getDefault("check_well_controls", false);
max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
// Timer init.
if (deck.hasField("TSTEP")) {
simtimer.init(deck);
@ -399,7 +417,7 @@ main(int argc, char** argv)
// polyprop.ads_vals[1] = param.getDefault("c_max_ads", 0.0025);
ads_vals[1] = 0.0015;
ads_vals[2] = 0.0025;
polyprop.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
polyprop.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals);
}
@ -423,13 +441,12 @@ main(int argc, char** argv)
bool use_segregation_split = false;
bool use_column_solver = false;
bool use_gauss_seidel_gravity = false;
if (use_gravity) {
if (use_gravity && use_reorder) {
use_segregation_split = param.getDefault("use_segregation_split", use_segregation_split);
if (use_segregation_split) {
use_column_solver = param.getDefault("use_column_solver", use_column_solver);
if (use_column_solver) {
// use_gauss_seidel_gravity is not implemented for polymer.
use_gauss_seidel_gravity = param.getDefault("use_gauss_seidel_gravity", use_gauss_seidel_gravity);
THROW("gauss_seidel_gravity is not implemented for polymer");
}
}
}
@ -438,6 +455,9 @@ main(int argc, char** argv)
int nl_pressure_maxiter = 0;
double nl_pressure_tolerance = 0.0;
if (rock_comp->isActive()) {
if (!use_reorder) {
THROW("Cannot run implicit (non-reordering) transport solver with rock compressibility yet.");
}
nl_pressure_maxiter = param.getDefault("nl_pressure_maxiter", 10);
nl_pressure_tolerance = param.getDefault("nl_pressure_tolerance", 1.0); // in Pascal
}
@ -464,7 +484,8 @@ main(int argc, char** argv)
// Initialising src
if (wells->c_wells()) {
Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
// Do nothing, wells will be the driving force, not source terms.
// Opm::wellsToSrc(*wells->c_wells(), num_cells, src);
} else {
const double default_injection = use_gravity ? 0.0 : 0.1;
const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
@ -472,7 +493,7 @@ main(int argc, char** argv)
src[0] = flow_per_sec;
src[num_cells - 1] = -flow_per_sec;
}
std::vector<double> reorder_src = src;
// Boundary conditions.
@ -488,7 +509,7 @@ main(int argc, char** argv)
Opm::LinearSolverFactory linsolver(param);
// Pressure solver.
const double *grav = use_gravity ? &gravity[0] : 0;
Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver);
Opm::IncompTpfa psolver(*grid->c_grid(), props->permeability(), grav, linsolver, wells->c_wells());
// Reordering solver.
const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9);
const int nl_maxiter = param.getDefault("nl_maxiter", 30);
@ -521,7 +542,6 @@ main(int argc, char** argv)
if (use_column_solver) {
Opm::extractColumn(*grid->c_grid(), columns);
}
Opm::GravityColumnSolverPolymer<NewtonPolymerTransportModel> colsolver(model, *grid->c_grid(), nl_tolerance, nl_maxiter);
// // // Not implemented for polymer.
@ -582,6 +602,19 @@ main(int argc, char** argv)
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> well_bhp;
std::vector<double> well_perfrates;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
int num_wells = 0;
if (wells->c_wells()) {
num_wells = wells->c_wells()->number_of_wells;
well_bhp.resize(num_wells, 0.0);
well_perfrates.resize(wells->c_wells()->well_connpos[num_wells], 0.0);
well_resflows_phase.resize((wells->c_wells()->number_of_phases)*(wells->c_wells()->number_of_wells), 0.0);
wellreport.push(*props, *wells->c_wells(), state.saturation(), 0.0, well_bhp, well_perfrates);
}
for (; !simtimer.done(); ++simtimer) {
// Report timestep and (optionally) write state to disk.
simtimer.report(std::cout);
@ -597,41 +630,93 @@ main(int argc, char** argv)
computeTotalMobility(*props, polyprop, allcells, state.saturation(), state.concentration(), state.maxconcentration(),
totmob);
}
std::vector<double> empty_vector_for_wells;
pressure_timer.start();
if (rock_comp->isActive()) {
rc.resize(num_cells);
std::vector<double> initial_pressure = state.pressure();
std::vector<double> prev_pressure;
for (int iter = 0; iter < nl_pressure_maxiter; ++iter) {
prev_pressure = state.pressure();
for (int cell = 0; cell < num_cells; ++cell) {
rc[cell] = rock_comp->rockComp(state.pressure()[cell]);
std::vector<double> wdp;
if (wells->c_wells()) {
Opm::computeWDP(*wells->c_wells(), *grid->c_grid(), state.saturation(), props->density(), gravity[2], true, wdp);
}
if (check_well_controls) {
computeFractionalFlow(*props, allcells, state.saturation(), fractional_flows);
}
if (check_well_controls) {
wells->applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls;
int well_control_iteration = 0;
do {
pressure_timer.start();
if (rock_comp->isActive()) {
rc.resize(num_cells);
std::vector<double> initial_pressure = state.pressure();
std::vector<double> initial_porevolume(num_cells);
computePorevolume(*grid->c_grid(), *props, *rock_comp, initial_pressure, initial_porevolume);
std::vector<double> pressure_increment(num_cells + num_wells);
std::vector<double> prev_pressure(num_cells + num_wells);
for (int iter = 0; iter < nl_pressure_maxiter; ++iter) {
for (int cell = 0; cell < num_cells; ++cell) {
rc[cell] = rock_comp->rockComp(state.pressure()[cell]);
}
computePorevolume(*grid->c_grid(), *props, *rock_comp, state.pressure(), porevol);
std::copy(state.pressure().begin(), state.pressure().end(), prev_pressure.begin());
std::copy(well_bhp.begin(), well_bhp.end(), prev_pressure.begin() + num_cells);
// prev_pressure = state.pressure();
// compute pressure increment
psolver.solveIncrement(totmob, omega, src, wdp, bcs.c_bcs(), porevol, rc,
prev_pressure, initial_porevolume, simtimer.currentStepLength(),
pressure_increment);
double max_change = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += pressure_increment[cell];
max_change = std::max(max_change, std::fabs(pressure_increment[cell]));
}
for (int well = 0; well < num_wells; ++well) {
well_bhp[well] += pressure_increment[num_cells + well];
max_change = std::max(max_change, std::fabs(pressure_increment[num_cells + well]));
}
std::cout << "Pressure iter " << iter << " max change = " << max_change << std::endl;
if (max_change < nl_pressure_tolerance) {
break;
}
}
state.pressure() = initial_pressure;
psolver.solve(totmob, omega, src, empty_vector_for_wells, bcs.c_bcs(), porevol, rc, simtimer.currentStepLength(),
state.pressure(), state.faceflux(), empty_vector_for_wells, empty_vector_for_wells);
double max_change = 0.0;
for (int cell = 0; cell < num_cells; ++cell) {
max_change = std::max(max_change, std::fabs(state.pressure()[cell] - prev_pressure[cell]));
psolver.computeFaceFlux(totmob, omega, src, wdp, bcs.c_bcs(), state.pressure(), state.faceflux(),
well_bhp, well_perfrates);
} else {
psolver.solve(totmob, omega, src, wdp, bcs.c_bcs(), state.pressure(), state.faceflux(),
well_bhp, well_perfrates);
}
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
if (check_well_controls) {
Opm::computePhaseFlowRatesPerWell(*wells->c_wells(),
fractional_flows,
well_perfrates,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells->conditionsMet(well_bhp, well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations) {
THROW("Could not satisfy well conditions in " << max_well_control_iterations << " tries.");
}
std::cout << "Pressure iter " << iter << " max change = " << max_change << std::endl;
if (max_change < nl_pressure_tolerance) {
break;
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
}
}
computePorevolume(*grid->c_grid(), *props, *rock_comp, state.pressure(), porevol);
} else {
psolver.solve(totmob, omega, src, empty_vector_for_wells, bcs.c_bcs(),
state.pressure(), state.faceflux(), empty_vector_for_wells, empty_vector_for_wells);
}
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
} while (!well_control_passed);
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
wells->c_wells(), well_perfrates, reorder_src);
// Process transport sources (to include bdy terms).
Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0, NULL, empty_vector_for_wells, reorder_src);
// Find inflow rate.
const double current_time = simtimer.currentTime();
@ -643,6 +728,7 @@ main(int argc, char** argv)
}
const double inflow_c = inflowc0;
// Solve transport.
transport_timer.start();
if (num_transport_substeps != 1) {
@ -650,24 +736,28 @@ main(int argc, char** argv)
std::cout << "Making " << num_transport_substeps << " transport substeps." << std::endl;
}
for (int tr_substep = 0; tr_substep < num_transport_substeps; ++tr_substep) {
Opm::toWaterSat(state.saturation(), reorder_sat);
reorder_model.solve(&state.faceflux()[0], &reorder_src[0], stepsize, inflow_c,
&reorder_sat[0], &state.concentration()[0], &state.maxconcentration()[0]);
Opm::toBothSat(reorder_sat, state.saturation());
Opm::computeInjectedProduced(*props, state.saturation(), src, stepsize, injected, produced);
if (use_segregation_split) {
if (use_column_solver) {
if (use_gauss_seidel_gravity) {
THROW("use_gauss_seidel_gravity option not implemented for polymer.");
// reorder_model.solveGravity(columns, stepsize, reorder_sat);
// Opm::toBothSat(reorder_sat, state.saturation());
if (use_reorder) {
Opm::toWaterSat(state.saturation(), reorder_sat);
reorder_model.solve(&state.faceflux()[0], &porevol[0], &reorder_src[0], stepsize, inflow_c,
&reorder_sat[0], &state.concentration()[0], &state.maxconcentration()[0]);
Opm::toBothSat(reorder_sat, state.saturation());
Opm::computeInjectedProduced(*props, state.saturation(), reorder_src, stepsize, injected, produced);
if (use_segregation_split) {
if (use_column_solver) {
if (use_gauss_seidel_gravity) {
THROW("use_gauss_seidel_gravity option not implemented for polymer.");
// reorder_model.solveGravity(columns, stepsize, reorder_sat);
// Opm::toBothSat(reorder_sat, state.saturation());
} else {
colsolver.solve(columns, stepsize, state.saturation(), state.concentration(),
state.maxconcentration());
}
} else {
colsolver.solve(columns, stepsize, state.saturation(), state.concentration(),
state.maxconcentration());
THROW("use_segregation_split option for polymer is only implemented in the use_column_solver case.");
}
} else {
THROW("use_segregation_split option for polymer is only implemented in the use_column_solver case.");
}
} else {
THROW("Implicit transport solver not implemented for polymer.");
}
}
transport_timer.stop();
@ -730,6 +820,11 @@ main(int argc, char** argv)
watercut.push(simtimer.currentTime() + simtimer.currentStepLength(),
produced[0]/(produced[0] + produced[1]),
tot_produced[0]/tot_porevol_init);
if (wells->c_wells()) {
wellreport.push(*props, *wells->c_wells(), state.saturation(),
simtimer.currentTime() + simtimer.currentStepLength(),
well_bhp, well_perfrates);
}
}
total_timer.stop();
@ -741,5 +836,8 @@ main(int argc, char** argv)
if (output) {
outputState(*grid->c_grid(), state, simtimer.currentStepNum(), output_dir);
outputWaterCut(watercut, output_dir);
if (wells->c_wells()) {
outputWellReport(wellreport, output_dir);
}
}
}

View File

@ -177,6 +177,7 @@ namespace Opm
void TransportModelPolymer::solve(const double* darcyflux,
const double* porevolume,
const double* source,
const double dt,
const double inflow_c,
@ -185,6 +186,7 @@ namespace Opm
double* cmax)
{
darcyflux_ = darcyflux;
porevolume_ = porevolume;
source_ = source;
dt_ = dt;
inflow_c_ = inflow_c;

View File

@ -56,6 +56,7 @@ namespace Opm
/// \TODO Now saturation is expected to be one sw value per cell,
/// change to [sw so] per cell.
void solve(const double* darcyflux,
const double* porevolume,
const double* source,
const double dt,
const double inflow_c,