Reintroduced Newton Simple (in s, c variables).

This commit is contained in:
Xavier Raynaud 2012-10-08 13:07:22 +02:00
parent ef053a1883
commit 20d7cf80ea
2 changed files with 83 additions and 34 deletions

View File

@ -628,7 +628,10 @@ namespace Opm
solveSingleCellBracketing(cell);
break;
case Newton:
solveSingleCellNewton(cell);
solveSingleCellNewton(cell, true);
break;
case NewtonC:
solveSingleCellNewton(cell, false);
break;
case Gradient:
solveSingleCellGradient(cell);
@ -828,7 +831,8 @@ namespace Opm
}
}
void TransportModelCompressiblePolymer::solveSingleCellNewton(int cell)
void TransportModelCompressiblePolymer::solveSingleCellNewton(int cell, bool use_sc,
bool use_explicit_step)
{
const int max_iters_split = maxit_;
int iters_used_split = 0;
@ -845,46 +849,85 @@ namespace Opm
fractionalflow_[cell] = ff;
mc_[cell] = mc;
return;
} else if (0.99 < x[0]) {
// x[0] = 0.5;
// x[1] = polyprops_.cMax()/2.0;
// res_eq.computeResidual(x, res, mc, ff);
}
if (use_explicit_step) {
// x is updated to an explicit step.
x[0] = saturation_[cell]-res[0];
if ((x[0]>1) || (x[0]<0)) {
// If we are outside the allowed domain for s, we
// reset s to 0.5, which should not far from the
// inflexion point of the residual, that is, the point
// where Newton's method performs best.
x[0] = 0.5;
x[1] = x[1];
}
if (x[0]>0) {
x[1] = concentration_[cell]*saturation_[cell]-res[1];
x[1] = x[1]/x[0];
if(x[1]> polyprops_.cMax()){
x[1]= polyprops_.cMax()/2.0;
}
if(x[1]<0){
x[1]=0;
}
} else {
x[1]=0;
}
res_eq.computeResidual(x, res, mc, ff);
}
const double x_min[2] = { 0.0, 0.0 };
const double x_max[2] = { 1.0, polyprops_.cMax()*adhoc_safety_ };
bool successfull_newton_step = true;
// initialize x_new to avoid warning
double x_new[2] = {0.0, 0.0};
double res_new[2];
ResSOnCurve res_s_on_curve(res_eq);
ResCOnCurve res_c_on_curve(res_eq);
// We switch to s-sc variable
x[1] = x[0]*x[1];
// x_c will contain the s-c variable
if (use_sc) {
// We switch to variables x[0] = s, x[1] = sc.
x[1] = x[0]*x[1];
}
// x_c will contain the s-c variable when use_sc = true
double x_c[2];
// Variables to store the Jacobian.
double dFx_dx;
double dFx_dy;
double dFy_dx;
double dFy_dy;
while ((norm(res) > tol_) &&
(iters_used_split < max_iters_split) &&
successfull_newton_step) {
double dres_s_dsdc[2];
double dres_c_dsdc[2];
scToc(x, x_c);
double x_c_app[2];
// The computation of the Jacobi fails for s=0 (we have an undetermined fraction 0/0).
// When s is close to zero we replace x_c with x_c_app.
x_c_app[1] = x_c[1];
if (x_c[0] < 1e-2*tol_) {
x_c_app[0] = 1e-2*tol_;
if (use_sc) {
// Convert from (s, c) to (s, sc) variables.
scToc(x, x_c);
double x_c_app[2];
// The computation of the Jacobi fails for s=0 (we have an undetermined fraction 0/0).
// When s is close to zero we replace x_c with x_c_app as defined now.
x_c_app[1] = x_c[1];
if (x_c[0] < 1e-2*tol_) {
x_c_app[0] = 1e-2*tol_;
} else {
x_c_app[0] = x_c[0];
}
res_eq.computeJacobiRes(x_c_app, dres_s_dsdc, dres_c_dsdc);
dFx_dx = (dres_s_dsdc[0]-x_c_app[1]*dres_s_dsdc[1]);
dFx_dy = (dres_s_dsdc[1]/x_c_app[0]);
dFy_dx = (dres_c_dsdc[0]-x_c_app[1]*dres_c_dsdc[1]);
dFy_dy = (dres_c_dsdc[1]/x_c_app[0]);
} else {
x_c_app[0] = x_c[0];
res_eq.computeJacobiRes(x, dres_s_dsdc, dres_c_dsdc);
dFx_dx= dres_s_dsdc[0];
dFx_dy= dres_s_dsdc[1];
dFy_dx= dres_c_dsdc[0];
dFy_dy= dres_c_dsdc[1];
}
res_eq.computeJacobiRes(x_c_app, dres_s_dsdc, dres_c_dsdc);
double dFx_dx = (dres_s_dsdc[0]-x_c_app[1]*dres_s_dsdc[1]);
double dFx_dy = (dres_s_dsdc[1]/x_c_app[0]);
double dFy_dx = (dres_c_dsdc[0]-x_c_app[1]*dres_c_dsdc[1]);
double dFy_dy = (dres_c_dsdc[1]/x_c_app[0]);
double det = dFx_dx*dFy_dy - dFy_dx*dFx_dy;
double alpha = 1.0;
int max_lin_it = 100;
@ -894,18 +937,26 @@ namespace Opm
while((norm(res_new)>norm(res)) && (lin_it<max_lin_it)) {
x_new[0] = x[0] - alpha*(res[0]*dFy_dy - res[1]*dFx_dy)/det;
x_new[1] = x[1] - alpha*(res[1]*dFx_dx - res[0]*dFy_dx)/det;
check_interval(x_min, x_max, x_new);
scToc(x_new, x_c);
res_eq.computeResidual(x_c, res_new, mc, ff);
if (use_sc) {
scToc(x_new, x_c);
check_interval(x_min, x_max, x_c);
res_eq.computeResidual(x_c, res_new, mc, ff);
} else {
check_interval(x_min, x_max, x);
res_eq.computeResidual(x, res_new, mc, ff);
}
alpha = alpha/2.0;
lin_it = lin_it + 1;
}
if (lin_it>=max_lin_it) {
successfull_newton_step = false;
} else {
scToc(x_new, x_c);
x[0] = x_c[0];
x[1] = x_c[1];
if (use_sc) {
scToc(x_new, x);
} else {
x[0] = x_new[0];
x[1] = x_new[1];
}
res[0] = res_new[0];
res[1] = res_new[1];
iters_used_split += 1;

View File

@ -46,7 +46,7 @@ namespace Opm
{
public:
enum SingleCellMethod { Bracketing, Newton, Gradient, NewtonSimpleSC, NewtonSimpleC};
enum SingleCellMethod { Bracketing, Newton, NewtonC, Gradient};
enum GradientMethod { Analytic, FinDif }; // Analytic is chosen (hard-coded)
/// Construct solver.
@ -194,10 +194,8 @@ namespace Opm
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
void solveSingleCellBracketing(int cell);
void solveSingleCellNewton(int cell);
void solveSingleCellNewton(int cell, bool use_sc, bool use_explicit_step = false);
void solveSingleCellGradient(int cell);
void solveSingleCellNewtonSimple(int cell,bool use_sc);
void solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux);