mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
Merge pull request #703 from atgeirr/faster_assembly_minimal
Faster assembly minimal
This commit is contained in:
commit
23b9e36331
@ -50,7 +50,6 @@
|
||||
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
||||
#include <opm/material/components/SimpleH2O.hpp>
|
||||
#include <opm/material/components/Dnapl.hpp>
|
||||
#include <opm/material/common/Unused.hpp>
|
||||
|
||||
#include <dune/common/version.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
@ -109,10 +109,20 @@ class BlackOilIntensiveQuantities
|
||||
using Toolbox = MathToolbox<Evaluation>;
|
||||
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
||||
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
|
||||
using FluidState = BlackOilFluidState<Evaluation, FluidSystem, enableTemperature, enableEnergy, compositionSwitchEnabled, enableEvaporation, enableBrine, enableSaltPrecipitation, Indices::numPhases >;
|
||||
using DiffusionIntensiveQuantities = BlackOilDiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
|
||||
|
||||
public:
|
||||
using FluidState = BlackOilFluidState<Evaluation,
|
||||
FluidSystem,
|
||||
enableTemperature,
|
||||
enableEnergy,
|
||||
compositionSwitchEnabled,
|
||||
enableEvaporation,
|
||||
enableBrine,
|
||||
enableSaltPrecipitation,
|
||||
Indices::numPhases>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
|
||||
BlackOilIntensiveQuantities()
|
||||
{
|
||||
if (compositionSwitchEnabled) {
|
||||
@ -134,11 +144,18 @@ public:
|
||||
|
||||
const auto& problem = elemCtx.problem();
|
||||
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
||||
const auto& linearizationType = elemCtx.linearizationType();
|
||||
|
||||
const auto& linearizationType = problem.model().linearizer().getLinearizationType();
|
||||
unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
||||
Scalar RvMax = FluidSystem::enableVaporizedOil()
|
||||
? problem.maxOilVaporizationFactor(timeIdx, globalSpaceIdx)
|
||||
: 0.0;
|
||||
Scalar RsMax = FluidSystem::enableDissolvedGas()
|
||||
? problem.maxGasDissolutionFactor(timeIdx, globalSpaceIdx)
|
||||
: 0.0;
|
||||
|
||||
asImp_().updateTemperature_(elemCtx, dofIdx, timeIdx);
|
||||
|
||||
unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(dofIdx, timeIdx);
|
||||
unsigned pvtRegionIdx = priVars.pvtRegionIndex();
|
||||
fluidState_.setPvtRegionIndex(pvtRegionIdx);
|
||||
|
||||
@ -207,10 +224,10 @@ public:
|
||||
|
||||
// now we compute all phase pressures
|
||||
Evaluation pC[numPhases];
|
||||
const auto& materialParams = problem.materialLawParams(elemCtx, dofIdx, timeIdx);
|
||||
const auto& materialParams = problem.materialLawParams(globalSpaceIdx);
|
||||
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
|
||||
|
||||
//oil is the reference phase for pressure
|
||||
// oil is the reference phase for pressure
|
||||
if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_pg_Rv || priVars.primaryVarsMeaning() == PrimaryVariables::Rvw_pg_Rv) {
|
||||
const Evaluation& pg = priVars.makeEvaluation(Indices::pressureSwitchIdx, timeIdx);
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
||||
@ -239,7 +256,7 @@ public:
|
||||
Evaluation SoMax = 0.0;
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
SoMax = max(fluidState_.saturation(oilPhaseIdx),
|
||||
elemCtx.problem().maxOilSaturation(globalSpaceIdx));
|
||||
problem.maxOilSaturation(globalSpaceIdx));
|
||||
}
|
||||
|
||||
// take the meaning of the switching primary variable into account for the gas
|
||||
@ -248,7 +265,6 @@ public:
|
||||
// in the threephase case, gas and oil phases are potentially present, i.e.,
|
||||
// we use the compositions of the gas-saturated oil and oil-saturated gas.
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
||||
const Evaluation& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
@ -260,7 +276,6 @@ public:
|
||||
fluidState_.setRs(0.0);
|
||||
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
|
||||
const Evaluation& RvSat = enableExtbo ? asImp_().rv() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
@ -284,7 +299,6 @@ public:
|
||||
fluidState_.setRvw(Rvw);
|
||||
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
|
||||
const Evaluation& RvSat = enableExtbo ? asImp_().rv() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
@ -306,7 +320,6 @@ public:
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
// the oil phase is not present, but we need to compute its "composition" for
|
||||
// the gravity correction anyway
|
||||
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
||||
const auto& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
@ -314,15 +327,13 @@ public:
|
||||
SoMax);
|
||||
|
||||
fluidState_.setRs(min(RsMax, RsSat));
|
||||
}
|
||||
}
|
||||
else {
|
||||
fluidState_.setRs(0.0);
|
||||
}
|
||||
}
|
||||
else if (priVars.primaryVarsMeaning() == PrimaryVariables::Sw_po_Rs) {
|
||||
// if the switching variable is the mole fraction of the gas component in the
|
||||
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
||||
|
||||
// oil phase, we can directly set the composition of the oil phase
|
||||
const auto& Rs = priVars.makeEvaluation(Indices::compositionSwitchIdx, timeIdx);
|
||||
fluidState_.setRs(min(RsMax, Rs));
|
||||
@ -330,7 +341,6 @@ public:
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
// the gas phase is not present, but we need to compute its "composition"
|
||||
// for the gravity correction anyway
|
||||
Scalar RvMax = elemCtx.problem().maxOilVaporizationFactor(timeIdx, globalSpaceIdx);
|
||||
const auto& RvSat = enableExtbo ? asImp_().rv() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
gasPhaseIdx,
|
||||
@ -356,7 +366,6 @@ public:
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
// the oil phase is not present, but we need to compute its "composition" for
|
||||
// the gravity correction anyway
|
||||
Scalar RsMax = elemCtx.problem().maxGasDissolutionFactor(timeIdx, globalSpaceIdx);
|
||||
const auto& RsSat = enableExtbo ? asImp_().rs() :
|
||||
FluidSystem::saturatedDissolutionFactor(fluidState_,
|
||||
oilPhaseIdx,
|
||||
@ -380,7 +389,7 @@ public:
|
||||
|
||||
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
||||
paramCache.setRegionIndex(pvtRegionIdx);
|
||||
if(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
|
||||
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
||||
paramCache.setMaxOilSat(SoMax);
|
||||
}
|
||||
paramCache.updateAll(fluidState_);
|
||||
@ -447,9 +456,9 @@ public:
|
||||
|
||||
// the porosity must be modified by the compressibility of the
|
||||
// rock...
|
||||
Scalar rockCompressibility = problem.rockCompressibility(elemCtx, dofIdx, timeIdx);
|
||||
Scalar rockCompressibility = problem.rockCompressibility(globalSpaceIdx);
|
||||
if (rockCompressibility > 0.0) {
|
||||
Scalar rockRefPressure = problem.rockReferencePressure(elemCtx, dofIdx, timeIdx);
|
||||
Scalar rockRefPressure = problem.rockReferencePressure(globalSpaceIdx);
|
||||
Evaluation x;
|
||||
if (FluidSystem::phaseIsActive(oilPhaseIdx)) {
|
||||
x = rockCompressibility*(fluidState_.pressure(oilPhaseIdx) - rockRefPressure);
|
||||
@ -477,6 +486,8 @@ public:
|
||||
porosity_ *= (1.0 - Sp);
|
||||
}
|
||||
|
||||
rockCompTransMultiplier_ = problem.template rockCompTransMultiplier<Evaluation>(*this, globalSpaceIdx);
|
||||
|
||||
asImp_().solventPvtUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
asImp_().zPvtUpdate_();
|
||||
asImp_().polymerPropertiesUpdate_(elemCtx, dofIdx, timeIdx);
|
||||
@ -527,6 +538,12 @@ public:
|
||||
const Evaluation& porosity() const
|
||||
{ return porosity_; }
|
||||
|
||||
/*!
|
||||
* The pressure-dependent transmissibility multiplier due to rock compressibility.
|
||||
*/
|
||||
const Evaluation& rockCompTransMultiplier() const
|
||||
{ return rockCompTransMultiplier_; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the index of the PVT region used to calculate the thermodynamic
|
||||
* quantities.
|
||||
@ -578,6 +595,7 @@ private:
|
||||
FluidState fluidState_;
|
||||
Scalar referencePorosity_;
|
||||
Evaluation porosity_;
|
||||
Evaluation rockCompTransMultiplier_;
|
||||
Evaluation mobility_[numPhases];
|
||||
};
|
||||
|
||||
|
549
opm/models/blackoil/blackoillocalresidualtpfa.hh
Normal file
549
opm/models/blackoil/blackoillocalresidualtpfa.hh
Normal file
@ -0,0 +1,549 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::BlackOilLocalResidual
|
||||
*/
|
||||
#ifndef EWOMS_BLACK_OIL_LOCAL_TPFA_RESIDUAL_HH
|
||||
#define EWOMS_BLACK_OIL_LOCAL_TPFA_RESIDUAL_HH
|
||||
|
||||
#include "blackoilproperties.hh"
|
||||
#include "blackoilsolventmodules.hh"
|
||||
#include "blackoilextbomodules.hh"
|
||||
#include "blackoilpolymermodules.hh"
|
||||
#include "blackoilenergymodules.hh"
|
||||
#include "blackoilfoammodules.hh"
|
||||
#include "blackoilbrinemodules.hh"
|
||||
#include "blackoildiffusionmodule.hh"
|
||||
#include "blackoilmicpmodules.hh"
|
||||
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
||||
|
||||
namespace Opm {
|
||||
/*!
|
||||
* \ingroup BlackOilModel
|
||||
*
|
||||
* \brief Calculates the local residual of the black oil model.
|
||||
*/
|
||||
template <class TypeTag>
|
||||
class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLocalResidual>
|
||||
{
|
||||
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
||||
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
||||
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
||||
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
||||
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
|
||||
enum { conti0EqIdx = Indices::conti0EqIdx };
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
||||
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
||||
|
||||
enum { dimWorld = GridView::dimensionworld };
|
||||
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
||||
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
||||
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
||||
|
||||
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
||||
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
||||
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
||||
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
|
||||
|
||||
static const bool waterEnabled = Indices::waterEnabled;
|
||||
static const bool gasEnabled = Indices::gasEnabled;
|
||||
static const bool oilEnabled = Indices::oilEnabled;
|
||||
static const bool compositionSwitchEnabled = (compositionSwitchIdx >= 0);
|
||||
|
||||
static constexpr bool blackoilConserveSurfaceVolume = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>();
|
||||
|
||||
static constexpr bool enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>();
|
||||
static constexpr bool enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>();
|
||||
static constexpr bool enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>();
|
||||
static constexpr bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
|
||||
static constexpr bool enableFoam = getPropValue<TypeTag, Properties::EnableFoam>();
|
||||
static constexpr bool enableBrine = getPropValue<TypeTag, Properties::EnableBrine>();
|
||||
static constexpr bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
|
||||
static constexpr bool enableMICP = getPropValue<TypeTag, Properties::EnableMICP>();
|
||||
|
||||
using SolventModule = BlackOilSolventModule<TypeTag>;
|
||||
using ExtboModule = BlackOilExtboModule<TypeTag>;
|
||||
using PolymerModule = BlackOilPolymerModule<TypeTag>;
|
||||
using EnergyModule = BlackOilEnergyModule<TypeTag>;
|
||||
using FoamModule = BlackOilFoamModule<TypeTag>;
|
||||
using BrineModule = BlackOilBrineModule<TypeTag>;
|
||||
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
|
||||
using MICPModule = BlackOilMICPModule<TypeTag>;
|
||||
|
||||
using Toolbox = MathToolbox<Evaluation>;
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \copydoc FvBaseLocalResidual::computeStorage
|
||||
*/
|
||||
template <class LhsEval>
|
||||
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned dofIdx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
|
||||
computeStorage(storage,
|
||||
intQuants);
|
||||
}
|
||||
|
||||
template <class LhsEval>
|
||||
static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
||||
const IntensiveQuantities& intQuants)
|
||||
{
|
||||
// retrieve the intensive quantities for the SCV at the specified point in time
|
||||
const auto& fs = intQuants.fluidState();
|
||||
storage = 0.0;
|
||||
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
||||
LhsEval surfaceVolume =
|
||||
Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
|
||||
* Toolbox::template decay<LhsEval>(fs.invB(phaseIdx))
|
||||
* Toolbox::template decay<LhsEval>(intQuants.porosity());
|
||||
|
||||
storage[conti0EqIdx + activeCompIdx] += surfaceVolume;
|
||||
|
||||
// account for dissolved gas
|
||||
if (phaseIdx == oilPhaseIdx && FluidSystem::enableDissolvedGas()) {
|
||||
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
||||
storage[conti0EqIdx + activeGasCompIdx] +=
|
||||
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rs())
|
||||
* surfaceVolume;
|
||||
}
|
||||
|
||||
// account for vaporized oil
|
||||
if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedOil()) {
|
||||
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
|
||||
storage[conti0EqIdx + activeOilCompIdx] +=
|
||||
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rv())
|
||||
* surfaceVolume;
|
||||
}
|
||||
|
||||
// account for vaporized water
|
||||
if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedWater()) {
|
||||
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
|
||||
storage[conti0EqIdx + activeWaterCompIdx] +=
|
||||
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rvw())
|
||||
* surfaceVolume;
|
||||
}
|
||||
}
|
||||
|
||||
adaptMassConservationQuantities_(storage, intQuants.pvtRegionIndex());
|
||||
|
||||
// deal with solvents (if present)
|
||||
SolventModule::addStorage(storage, intQuants);
|
||||
|
||||
// deal with zFracton (if present)
|
||||
ExtboModule::addStorage(storage, intQuants);
|
||||
|
||||
// deal with polymer (if present)
|
||||
PolymerModule::addStorage(storage, intQuants);
|
||||
|
||||
// deal with energy (if present)
|
||||
EnergyModule::addStorage(storage, intQuants);
|
||||
|
||||
// deal with foam (if present)
|
||||
FoamModule::addStorage(storage, intQuants);
|
||||
|
||||
// deal with salt (if present)
|
||||
BrineModule::addStorage(storage, intQuants);
|
||||
|
||||
// deal with micp (if present)
|
||||
MICPModule::addStorage(storage, intQuants);
|
||||
}
|
||||
|
||||
/*!
|
||||
* This function works like the ElementContext-based version with
|
||||
* one main difference: The darcy flux is calculated here, not
|
||||
* read from the extensive quantities of the element context.
|
||||
*/
|
||||
static void computeFlux(RateVector& flux,
|
||||
const Problem& problem,
|
||||
const unsigned globalIndexIn,
|
||||
const unsigned globalIndexEx,
|
||||
const IntensiveQuantities& intQuantsIn,
|
||||
const IntensiveQuantities& intQuantsEx,
|
||||
const Scalar trans,
|
||||
const Scalar faceArea)
|
||||
{
|
||||
flux = 0.0;
|
||||
Scalar Vin = problem.model().dofTotalVolume(globalIndexIn);
|
||||
Scalar Vex = problem.model().dofTotalVolume(globalIndexEx);
|
||||
|
||||
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = problem.gravity()[dimWorld - 1];
|
||||
|
||||
// this is quite hacky because the dune grid interface does not provide a
|
||||
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||||
// solution would be to take the Z coordinate of the element centroids, but since
|
||||
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||||
// here...
|
||||
Scalar zIn = problem.dofCenterDepth(globalIndexIn);
|
||||
Scalar zEx = problem.dofCenterDepth(globalIndexEx);
|
||||
|
||||
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||||
// exterior DOF)
|
||||
Scalar distZ = zIn - zEx; // NB could be precalculated
|
||||
|
||||
calculateFluxes_(flux,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
Vin,
|
||||
Vex,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
distZ * g,
|
||||
thpres,
|
||||
trans,
|
||||
faceArea);
|
||||
}
|
||||
|
||||
// This function demonstrates compatibility with the ElementContext-based interface.
|
||||
// Actually using it will lead to double work since the element context already contains
|
||||
// fluxes through its stored ExtensiveQuantities.
|
||||
static void computeFlux(RateVector& flux,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned scvfIdx,
|
||||
unsigned timeIdx)
|
||||
{
|
||||
assert(timeIdx == 0);
|
||||
|
||||
flux = 0.0;
|
||||
// need for dary flux calculation
|
||||
const auto& problem = elemCtx.problem();
|
||||
const auto& stencil = elemCtx.stencil(timeIdx);
|
||||
const auto& scvf = stencil.interiorFace(scvfIdx);
|
||||
|
||||
unsigned interiorDofIdx = scvf.interiorIndex();
|
||||
unsigned exteriorDofIdx = scvf.exteriorIndex();
|
||||
assert(interiorDofIdx != exteriorDofIdx);
|
||||
|
||||
// unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
|
||||
// unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
|
||||
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
|
||||
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
|
||||
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
|
||||
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
|
||||
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
||||
Scalar faceArea = scvf.area();
|
||||
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
|
||||
|
||||
// estimate the gravity correction: for performance reasons we use a simplified
|
||||
// approach for this flux module that assumes that gravity is constant and always
|
||||
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
||||
Scalar g = problem.gravity()[dimWorld - 1];
|
||||
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
||||
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
||||
|
||||
// this is quite hacky because the dune grid interface does not provide a
|
||||
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
||||
// solution would be to take the Z coordinate of the element centroids, but since
|
||||
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
||||
// here...
|
||||
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
||||
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
|
||||
|
||||
// the distances from the DOF's depths. (i.e., the additional depth of the
|
||||
// exterior DOF)
|
||||
Scalar distZ = zIn - zEx;
|
||||
|
||||
calculateFluxes_(flux,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
Vin,
|
||||
Vex,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
distZ * g,
|
||||
thpres,
|
||||
trans,
|
||||
faceArea);
|
||||
}
|
||||
|
||||
static void calculateFluxes_(RateVector& flux,
|
||||
const IntensiveQuantities& intQuantsIn,
|
||||
const IntensiveQuantities& intQuantsEx,
|
||||
const Scalar& Vin,
|
||||
const Scalar& Vex,
|
||||
const unsigned& globalIndexIn,
|
||||
const unsigned& globalIndexEx,
|
||||
const Scalar& distZg,
|
||||
const Scalar& thpres,
|
||||
const Scalar& trans,
|
||||
const Scalar& faceArea)
|
||||
{
|
||||
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
||||
if (!FluidSystem::phaseIsActive(phaseIdx))
|
||||
continue;
|
||||
// darcy flux calculation
|
||||
short dnIdx;
|
||||
//
|
||||
short upIdx;
|
||||
// fake intices should only be used to get upwind anc compatibility with old functions
|
||||
short interiorDofIdx = 0; // NB
|
||||
short exteriorDofIdx = 1; // NB
|
||||
Evaluation pressureDifference;
|
||||
ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
|
||||
dnIdx,
|
||||
pressureDifference,
|
||||
intQuantsIn,
|
||||
intQuantsEx,
|
||||
phaseIdx, // input
|
||||
interiorDofIdx, // input
|
||||
exteriorDofIdx, // intput
|
||||
Vin,
|
||||
Vex,
|
||||
globalIndexIn,
|
||||
globalIndexEx,
|
||||
distZg,
|
||||
thpres);
|
||||
|
||||
|
||||
|
||||
const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
|
||||
unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
|
||||
const Evaluation& transMult = up.rockCompTransMultiplier();
|
||||
Evaluation darcyFlux;
|
||||
if (pressureDifference == 0) {
|
||||
darcyFlux = 0.0; // NB maybe we could drop calculations
|
||||
} else {
|
||||
if (globalUpIndex == globalIndexIn)
|
||||
darcyFlux = pressureDifference * up.mobility(phaseIdx) * transMult * (-trans / faceArea);
|
||||
else
|
||||
darcyFlux = pressureDifference * (Toolbox::value(up.mobility(phaseIdx)) * Toolbox::value(transMult) * (-trans / faceArea));
|
||||
}
|
||||
|
||||
unsigned pvtRegionIdx = up.pvtRegionIndex();
|
||||
using FluidState = typename IntensiveQuantities::FluidState;
|
||||
// if (upIdx == globalFocusDofIdx){
|
||||
if (globalUpIndex == globalIndexIn) {
|
||||
const auto& invB
|
||||
= getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB * darcyFlux;
|
||||
evalPhaseFluxes_<Evaluation, Evaluation, FluidState>(
|
||||
flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
||||
} else {
|
||||
const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB * darcyFlux;
|
||||
evalPhaseFluxes_<Scalar, Evaluation, FluidState>(
|
||||
flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
||||
}
|
||||
}
|
||||
|
||||
// deal with solvents (if present)
|
||||
static_assert(!enableSolvent, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// SolventModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with zFracton (if present)
|
||||
static_assert(!enableExtbo, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// ExtboModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with polymer (if present)
|
||||
static_assert(!enablePolymer, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// PolymerModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with energy (if present)
|
||||
static_assert(!enableEnergy, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// EnergyModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with foam (if present)
|
||||
static_assert(!enableFoam, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// FoamModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with salt (if present)
|
||||
static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with diffusion (if present)
|
||||
static_assert(!enableDiffusion, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// DiffusionModule::addDiffusiveFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
// deal with micp (if present)
|
||||
static_assert(!enableMICP, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
||||
// MICPModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
||||
|
||||
}
|
||||
|
||||
static void computeSource(RateVector& source,
|
||||
const Problem& problem,
|
||||
unsigned globalSpaceIdex,
|
||||
unsigned timeIdx)
|
||||
{
|
||||
// retrieve the source term intrinsic to the problem
|
||||
problem.source(source, globalSpaceIdex, timeIdx);
|
||||
|
||||
// deal with MICP (if present)
|
||||
// deal with micp (if present)
|
||||
static_assert(!enableMICP, "Relevant addSource() method must be implemented for this module before enabling.");
|
||||
// MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// scale the source term of the energy equation
|
||||
if (enableEnergy)
|
||||
source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \copydoc FvBaseLocalResidual::computeSource
|
||||
*/
|
||||
void computeSource(RateVector& source,
|
||||
const ElementContext& elemCtx,
|
||||
unsigned dofIdx,
|
||||
unsigned timeIdx) const
|
||||
{
|
||||
// retrieve the source term intrinsic to the problem
|
||||
elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// deal with MICP (if present)
|
||||
MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
|
||||
|
||||
// scale the source term of the energy equation
|
||||
if (enableEnergy)
|
||||
source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
|
||||
}
|
||||
|
||||
template <class UpEval, class FluidState>
|
||||
static void evalPhaseFluxes_(RateVector& flux,
|
||||
unsigned phaseIdx,
|
||||
unsigned pvtRegionIdx,
|
||||
const ExtensiveQuantities& extQuants,
|
||||
const FluidState& upFs)
|
||||
{
|
||||
|
||||
const auto& invB = getInvB_<FluidSystem, FluidState, UpEval>(upFs, phaseIdx, pvtRegionIdx);
|
||||
const auto& surfaceVolumeFlux = invB * extQuants.volumeFlux(phaseIdx);
|
||||
evalPhaseFluxes_<UpEval>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, upFs);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Helper function to calculate the flux of mass in terms of conservation
|
||||
* quantities via specific fluid phase over a face.
|
||||
*/
|
||||
template <class UpEval, class Eval,class FluidState>
|
||||
static void evalPhaseFluxes_(RateVector& flux,
|
||||
unsigned phaseIdx,
|
||||
unsigned pvtRegionIdx,
|
||||
const Eval& surfaceVolumeFlux,
|
||||
const FluidState& upFs)
|
||||
{
|
||||
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
||||
|
||||
if (blackoilConserveSurfaceVolume)
|
||||
flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux;
|
||||
else
|
||||
flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux*FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
|
||||
|
||||
if (phaseIdx == oilPhaseIdx) {
|
||||
// dissolved gas (in the oil phase).
|
||||
if (FluidSystem::enableDissolvedGas()) {
|
||||
const auto& Rs = BlackOil::getRs_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
||||
|
||||
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
||||
if (blackoilConserveSurfaceVolume)
|
||||
flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux;
|
||||
else
|
||||
flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
}
|
||||
else if (phaseIdx == gasPhaseIdx) {
|
||||
// vaporized oil (in the gas phase).
|
||||
if (FluidSystem::enableVaporizedOil()) {
|
||||
const auto& Rv = BlackOil::getRv_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
||||
|
||||
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
|
||||
if (blackoilConserveSurfaceVolume)
|
||||
flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux;
|
||||
else
|
||||
flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux*FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
// vaporized water (in the gas phase).
|
||||
if (FluidSystem::enableVaporizedWater()) {
|
||||
const auto& Rvw = BlackOil::getRvw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
||||
|
||||
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
|
||||
if (blackoilConserveSurfaceVolume)
|
||||
flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux;
|
||||
else
|
||||
flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux*FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Helper function to convert the mass-related parts of a Dune::FieldVector
|
||||
* that stores conservation quantities in terms of "surface-volume" to the
|
||||
* conservation quantities used by the model.
|
||||
*
|
||||
* Depending on the value of the BlackoilConserveSurfaceVolume property, the model
|
||||
* either conserves mass by means of "surface volume" of the components or mass
|
||||
* directly. In the former case, this method is a no-op; in the latter, the values
|
||||
* passed are multiplied by their respective pure component's density at surface
|
||||
* conditions.
|
||||
*/
|
||||
template <class Scalar>
|
||||
static void adaptMassConservationQuantities_(Dune::FieldVector<Scalar, numEq>& container, unsigned pvtRegionIdx)
|
||||
{
|
||||
if (blackoilConserveSurfaceVolume)
|
||||
return;
|
||||
|
||||
// convert "surface volume" to mass. this is complicated a bit by the fact that
|
||||
// not all phases are necessarily enabled. (we here assume that if a fluid phase
|
||||
// is disabled, its respective "main" component is not considered as well.)
|
||||
|
||||
if (waterEnabled) {
|
||||
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
|
||||
container[conti0EqIdx + activeWaterCompIdx] *=
|
||||
FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
|
||||
if (gasEnabled) {
|
||||
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
||||
container[conti0EqIdx + activeGasCompIdx] *=
|
||||
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
|
||||
if (oilEnabled) {
|
||||
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
|
||||
container[conti0EqIdx + activeOilCompIdx] *=
|
||||
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif
|
@ -298,6 +298,9 @@ class BlackOilModel
|
||||
using MICPModule = BlackOilMICPModule<TypeTag>;
|
||||
|
||||
public:
|
||||
|
||||
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
|
||||
BlackOilModel(Simulator& simulator)
|
||||
: ParentType(simulator)
|
||||
{}
|
||||
|
@ -130,6 +130,12 @@ public:
|
||||
unsigned) const
|
||||
{ return 0.0; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the compressibility of the porous medium of a cell
|
||||
*/
|
||||
Scalar rockCompressibility(unsigned) const
|
||||
{ return 0.0; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the reference pressure for rock the compressibility of a cell
|
||||
*/
|
||||
@ -139,6 +145,12 @@ public:
|
||||
unsigned) const
|
||||
{ return 1e5; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the reference pressure for rock the compressibility of a cell
|
||||
*/
|
||||
Scalar rockReferencePressure(unsigned) const
|
||||
{ return 1e5; }
|
||||
|
||||
/*!
|
||||
* \brief Returns the reference temperature
|
||||
*
|
||||
@ -159,6 +171,11 @@ public:
|
||||
unsigned) const
|
||||
{ return 1.0; }
|
||||
|
||||
template <class LhsEval>
|
||||
LhsEval rockCompTransMultiplier(const IntensiveQuantities&,
|
||||
unsigned) const
|
||||
{ return 1.0; }
|
||||
|
||||
private:
|
||||
//! Returns the implementation of the problem (i.e. static polymorphism)
|
||||
Implementation& asImp_()
|
||||
|
@ -33,7 +33,6 @@
|
||||
#include <opm/models/common/multiphasebaseproblem.hh>
|
||||
|
||||
#include <opm/material/common/Means.hpp>
|
||||
#include <opm/material/common/Unused.hpp>
|
||||
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
@ -1411,7 +1411,7 @@ public:
|
||||
// previous time step so that we can start the next
|
||||
// update at a physically meaningful solution.
|
||||
solution(/*timeIdx=*/0) = solution(/*timeIdx=*/1);
|
||||
invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
||||
invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (unsigned timeIdx = 0; timeIdx < historySize; ++timeIdx) {
|
||||
|
476
opm/models/discretization/common/tpfalinearizer.hh
Normal file
476
opm/models/discretization/common/tpfalinearizer.hh
Normal file
@ -0,0 +1,476 @@
|
||||
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
||||
// vi: set et ts=4 sw=4 sts=4:
|
||||
/*
|
||||
This file is part of the Open Porous Media project (OPM).
|
||||
|
||||
OPM is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
OPM is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Consult the COPYING file in the top-level source directory of this
|
||||
module for the precise wording of the license and the list of
|
||||
copyright holders.
|
||||
*/
|
||||
/*!
|
||||
* \file
|
||||
*
|
||||
* \copydoc Opm::FvBaseLinearizer
|
||||
*/
|
||||
#ifndef TPFA_LINEARIZER_HH
|
||||
#define TPFA_LINEARIZER_HH
|
||||
|
||||
#include "fvbaseproperties.hh"
|
||||
#include "linearizationtype.hh"
|
||||
|
||||
#include <opm/models/discretization/common/baseauxiliarymodule.hh>
|
||||
|
||||
#include <opm/material/common/Exceptions.hpp>
|
||||
#include <opm/grid/utility/SparseTable.hpp>
|
||||
|
||||
#include <dune/common/version.hh>
|
||||
#include <dune/common/fvector.hh>
|
||||
#include <dune/common/fmatrix.hh>
|
||||
|
||||
#include <type_traits>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <set>
|
||||
#include <exception> // current_exception, rethrow_exception
|
||||
#include <mutex>
|
||||
|
||||
|
||||
namespace Opm {
|
||||
// forward declarations
|
||||
template<class TypeTag>
|
||||
class EcfvDiscretization;
|
||||
|
||||
/*!
|
||||
* \ingroup FiniteVolumeDiscretizations
|
||||
*
|
||||
* \brief The common code for the linearizers of non-linear systems of equations
|
||||
*
|
||||
* This class assumes that these system of equations to be linearized are stemming from
|
||||
* models that use an finite volume scheme for spatial discretization and an Euler
|
||||
* scheme for time discretization.
|
||||
*/
|
||||
template<class TypeTag>
|
||||
class TpfaLinearizer
|
||||
{
|
||||
//! \cond SKIP_THIS
|
||||
using Model = GetPropType<TypeTag, Properties::Model>;
|
||||
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
||||
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
||||
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
||||
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
||||
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
||||
|
||||
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
||||
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
||||
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
||||
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
||||
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
||||
using Stencil = GetPropType<TypeTag, Properties::Stencil>;
|
||||
using LocalResidual = GetPropType<TypeTag, Properties::LocalResidual>;
|
||||
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
||||
|
||||
using Element = typename GridView::template Codim<0>::Entity;
|
||||
using ElementIterator = typename GridView::template Codim<0>::Iterator;
|
||||
|
||||
using Vector = GlobalEqVector;
|
||||
|
||||
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
||||
enum { historySize = getPropValue<TypeTag, Properties::TimeDiscHistorySize>() };
|
||||
|
||||
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
|
||||
using VectorBlock = Dune::FieldVector<Scalar, numEq>;
|
||||
using ADVectorBlock = GetPropType<TypeTag, Properties::RateVector>;
|
||||
|
||||
static const bool linearizeNonLocalElements = getPropValue<TypeTag, Properties::LinearizeNonLocalElements>();
|
||||
|
||||
// copying the linearizer is not a good idea
|
||||
TpfaLinearizer(const TpfaLinearizer&);
|
||||
//! \endcond
|
||||
|
||||
public:
|
||||
TpfaLinearizer()
|
||||
: jacobian_()
|
||||
{
|
||||
simulatorPtr_ = 0;
|
||||
}
|
||||
|
||||
~TpfaLinearizer()
|
||||
{
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Register all run-time parameters for the Jacobian linearizer.
|
||||
*/
|
||||
static void registerParameters()
|
||||
{ }
|
||||
|
||||
/*!
|
||||
* \brief Initialize the linearizer.
|
||||
*
|
||||
* At this point we can assume that all objects in the simulator
|
||||
* have been allocated. We cannot assume that they are fully
|
||||
* initialized, though.
|
||||
*
|
||||
* \copydetails Doxygen::simulatorParam
|
||||
*/
|
||||
void init(Simulator& simulator)
|
||||
{
|
||||
simulatorPtr_ = &simulator;
|
||||
eraseMatrix();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Causes the Jacobian matrix to be recreated from scratch before the next
|
||||
* iteration.
|
||||
*
|
||||
* This method is usally called if the sparsity pattern has changed for some
|
||||
* reason. (e.g. by modifications of the grid or changes of the auxiliary equations.)
|
||||
*/
|
||||
void eraseMatrix()
|
||||
{
|
||||
jacobian_.reset();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Linearize the full system of non-linear equations.
|
||||
*
|
||||
* The linearizationType() controls the scheme used and the focus
|
||||
* time index. The default is fully implicit scheme, and focus index
|
||||
* equal to 0, i.e. current time (end of step).
|
||||
*
|
||||
* This linearizes the spatial domain and all auxiliary equations.
|
||||
*/
|
||||
void linearize()
|
||||
{
|
||||
linearizeDomain();
|
||||
linearizeAuxiliaryEquations();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Linearize the part of the non-linear system of equations that is associated
|
||||
* with the spatial domain.
|
||||
*
|
||||
* That means that the global Jacobian of the residual is assembled and the residual
|
||||
* is evaluated for the current solution.
|
||||
*
|
||||
* The current state of affairs (esp. the previous and the current solutions) is
|
||||
* represented by the model object.
|
||||
*/
|
||||
void linearizeDomain()
|
||||
{
|
||||
// we defer the initialization of the Jacobian matrix until here because the
|
||||
// auxiliary modules usually assume the problem, model and grid to be fully
|
||||
// initialized...
|
||||
if (!jacobian_)
|
||||
initFirstIteration_();
|
||||
|
||||
int succeeded;
|
||||
try {
|
||||
linearize_();
|
||||
succeeded = 1;
|
||||
}
|
||||
catch (const std::exception& e)
|
||||
{
|
||||
std::cout << "rank " << simulator_().gridView().comm().rank()
|
||||
<< " caught an exception while linearizing:" << e.what()
|
||||
<< "\n" << std::flush;
|
||||
succeeded = 0;
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
std::cout << "rank " << simulator_().gridView().comm().rank()
|
||||
<< " caught an exception while linearizing"
|
||||
<< "\n" << std::flush;
|
||||
succeeded = 0;
|
||||
}
|
||||
succeeded = gridView_().comm().min(succeeded);
|
||||
|
||||
if (!succeeded)
|
||||
throw NumericalIssue("A process did not succeed in linearizing the system");
|
||||
}
|
||||
|
||||
void finalize()
|
||||
{ jacobian_->finalize(); }
|
||||
|
||||
/*!
|
||||
* \brief Linearize the part of the non-linear system of equations that is associated
|
||||
* with the spatial domain.
|
||||
*/
|
||||
void linearizeAuxiliaryEquations()
|
||||
{
|
||||
// flush possible local caches into matrix structure
|
||||
jacobian_->commit();
|
||||
|
||||
auto& model = model_();
|
||||
const auto& comm = simulator_().gridView().comm();
|
||||
for (unsigned auxModIdx = 0; auxModIdx < model.numAuxiliaryModules(); ++auxModIdx) {
|
||||
bool succeeded = true;
|
||||
try {
|
||||
model.auxiliaryModule(auxModIdx)->linearize(*jacobian_, residual_);
|
||||
}
|
||||
catch (const std::exception& e) {
|
||||
succeeded = false;
|
||||
|
||||
std::cout << "rank " << simulator_().gridView().comm().rank()
|
||||
<< " caught an exception while linearizing:" << e.what()
|
||||
<< "\n" << std::flush;
|
||||
}
|
||||
|
||||
succeeded = comm.min(succeeded);
|
||||
|
||||
if (!succeeded)
|
||||
throw NumericalIssue("linearization of an auxiliary equation failed");
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief Return constant reference to global Jacobian matrix backend.
|
||||
*/
|
||||
const SparseMatrixAdapter& jacobian() const
|
||||
{ return *jacobian_; }
|
||||
|
||||
SparseMatrixAdapter& jacobian()
|
||||
{ return *jacobian_; }
|
||||
|
||||
/*!
|
||||
* \brief Return constant reference to global residual vector.
|
||||
*/
|
||||
const GlobalEqVector& residual() const
|
||||
{ return residual_; }
|
||||
|
||||
GlobalEqVector& residual()
|
||||
{ return residual_; }
|
||||
|
||||
void setLinearizationType(LinearizationType linearizationType){
|
||||
linearizationType_ = linearizationType;
|
||||
};
|
||||
|
||||
const LinearizationType& getLinearizationType() const{
|
||||
return linearizationType_;
|
||||
};
|
||||
|
||||
/*!
|
||||
* \brief Returns the map of constraint degrees of freedom.
|
||||
*
|
||||
* (This object is only non-empty if the EnableConstraints property is true.)
|
||||
*/
|
||||
const std::map<unsigned, Constraints> constraintsMap() const
|
||||
{ return {}; }
|
||||
|
||||
private:
|
||||
Simulator& simulator_()
|
||||
{ return *simulatorPtr_; }
|
||||
const Simulator& simulator_() const
|
||||
{ return *simulatorPtr_; }
|
||||
|
||||
Problem& problem_()
|
||||
{ return simulator_().problem(); }
|
||||
const Problem& problem_() const
|
||||
{ return simulator_().problem(); }
|
||||
|
||||
Model& model_()
|
||||
{ return simulator_().model(); }
|
||||
const Model& model_() const
|
||||
{ return simulator_().model(); }
|
||||
|
||||
const GridView& gridView_() const
|
||||
{ return problem_().gridView(); }
|
||||
|
||||
void initFirstIteration_()
|
||||
{
|
||||
// initialize the BCRS matrix for the Jacobian of the residual function
|
||||
createMatrix_();
|
||||
|
||||
// initialize the Jacobian matrix and the vector for the residual function
|
||||
residual_.resize(model_().numTotalDof());
|
||||
resetSystem_();
|
||||
}
|
||||
|
||||
// Construct the BCRS matrix for the Jacobian of the residual function
|
||||
void createMatrix_()
|
||||
{
|
||||
const auto& model = model_();
|
||||
Stencil stencil(gridView_(), model_().dofMapper());
|
||||
|
||||
// for the main model, find out the global indices of the neighboring degrees of
|
||||
// freedom of each primary degree of freedom
|
||||
using NeighborSet = std::set< unsigned >;
|
||||
std::vector<NeighborSet> sparsityPattern(model.numTotalDof());
|
||||
|
||||
unsigned numCells = model.numTotalDof();
|
||||
neighborInfo_.reserve(numCells, 6 * numCells);
|
||||
std::vector<NeighborInfo> loc_nbinfo;
|
||||
|
||||
ElementIterator elemIt = gridView_().template begin<0>();
|
||||
const ElementIterator elemEndIt = gridView_().template end<0>();
|
||||
for (; elemIt != elemEndIt; ++elemIt) {
|
||||
const Element& elem = *elemIt;
|
||||
stencil.update(elem);
|
||||
|
||||
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
||||
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
||||
loc_nbinfo.resize(stencil.numDof() - 1); // Do not include the primary dof in neighborInfo_
|
||||
|
||||
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
||||
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
||||
sparsityPattern[myIdx].insert(neighborIdx);
|
||||
if (dofIdx > 0) {
|
||||
const double trans = problem_().transmissibility(myIdx, neighborIdx);
|
||||
const double area = stencil.interiorFace(dofIdx - 1).area();
|
||||
loc_nbinfo[dofIdx - 1] = NeighborInfo{neighborIdx, trans, area};
|
||||
}
|
||||
}
|
||||
neighborInfo_.appendRow(loc_nbinfo.begin(), loc_nbinfo.end());
|
||||
}
|
||||
}
|
||||
|
||||
// add the additional neighbors and degrees of freedom caused by the auxiliary
|
||||
// equations
|
||||
size_t numAuxMod = model.numAuxiliaryModules();
|
||||
for (unsigned auxModIdx = 0; auxModIdx < numAuxMod; ++auxModIdx)
|
||||
model.auxiliaryModule(auxModIdx)->addNeighbors(sparsityPattern);
|
||||
|
||||
// allocate raw matrix
|
||||
jacobian_.reset(new SparseMatrixAdapter(simulator_()));
|
||||
|
||||
// create matrix structure based on sparsity pattern
|
||||
jacobian_->reserve(sparsityPattern);
|
||||
}
|
||||
|
||||
// reset the global linear system of equations.
|
||||
void resetSystem_()
|
||||
{
|
||||
residual_ = 0.0;
|
||||
// zero all matrix entries
|
||||
jacobian_->clear();
|
||||
}
|
||||
|
||||
public:
|
||||
void setResAndJacobi(VectorBlock& res, MatrixBlock& bMat, const ADVectorBlock& resid) const
|
||||
{
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++)
|
||||
res[eqIdx] = resid[eqIdx].value();
|
||||
|
||||
for (unsigned eqIdx = 0; eqIdx < numEq; eqIdx++) {
|
||||
for (unsigned pvIdx = 0; pvIdx < numEq; pvIdx++) {
|
||||
// A[dofIdx][focusDofIdx][eqIdx][pvIdx] is the partial derivative of
|
||||
// the residual function 'eqIdx' for the degree of freedom 'dofIdx'
|
||||
// with regard to the focus variable 'pvIdx' of the degree of freedom
|
||||
// 'focusDofIdx'
|
||||
bMat[eqIdx][pvIdx] = resid[eqIdx].derivative(pvIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void linearize_()
|
||||
{
|
||||
const bool well_local = true;
|
||||
resetSystem_();
|
||||
unsigned numCells = model_().numTotalDof();
|
||||
#ifdef _OPENMP
|
||||
#pragma omp parallel for
|
||||
#endif
|
||||
for (unsigned globI = 0; globI < numCells; globI++) {
|
||||
const auto& nbInfos = neighborInfo_[globI]; // this is a set but should maybe be changed
|
||||
VectorBlock res(0.0);
|
||||
MatrixBlock bMat(0.0);
|
||||
ADVectorBlock adres(0.0);
|
||||
const IntensiveQuantities* intQuantsInP = model_().cachedIntensiveQuantities(globI, /*timeIdx*/ 0);
|
||||
if (intQuantsInP == nullptr) {
|
||||
throw std::logic_error("Missing updated intensive quantities for cell " + std::to_string(globI));
|
||||
}
|
||||
const IntensiveQuantities& intQuantsIn = *intQuantsInP;
|
||||
|
||||
// Flux term.
|
||||
short loc = 0;
|
||||
for (const auto& nbInfo : nbInfos) {
|
||||
unsigned globJ = nbInfo.neighbor;
|
||||
assert(globJ != globI);
|
||||
res = 0.0;
|
||||
bMat = 0.0;
|
||||
adres = 0.0;
|
||||
const IntensiveQuantities* intQuantsExP = model_().cachedIntensiveQuantities(globJ, /*timeIdx*/ 0);
|
||||
if (intQuantsExP == nullptr) {
|
||||
throw std::logic_error("Missing updated intensive quantities for cell " + std::to_string(globJ) + " when assembling fluxes for cell " + std::to_string(globI));
|
||||
}
|
||||
const IntensiveQuantities& intQuantsEx = *intQuantsExP;
|
||||
LocalResidual::computeFlux(
|
||||
adres, problem_(), globI, globJ, intQuantsIn, intQuantsEx, nbInfo.trans, nbInfo.faceArea);
|
||||
adres *= nbInfo.faceArea;
|
||||
setResAndJacobi(res, bMat, adres);
|
||||
residual_[globI] += res;
|
||||
jacobian_->addToBlock(globI, globI, bMat);
|
||||
bMat *= -1.0;
|
||||
jacobian_->addToBlock(globJ, globI, bMat);
|
||||
++loc;
|
||||
}
|
||||
|
||||
// Accumulation term.
|
||||
double dt = simulator_().timeStepSize();
|
||||
double volume = model_().dofTotalVolume(globI);
|
||||
Scalar storefac = volume / dt;
|
||||
adres = 0.0;
|
||||
LocalResidual::computeStorage(adres, intQuantsIn);
|
||||
setResAndJacobi(res, bMat, adres);
|
||||
// TODO: check recycleFirst etc.
|
||||
// first we use it as storage cache
|
||||
if (model_().newtonMethod().numIterations() == 0) {
|
||||
model_().updateCachedStorage(globI, /*timeIdx=*/1, res);
|
||||
}
|
||||
res -= model_().cachedStorage(globI, 1);
|
||||
res *= storefac;
|
||||
bMat *= storefac;
|
||||
// residual_[globI] -= model_().cachedStorage(globI, 1); //*storefac;
|
||||
residual_[globI] += res;
|
||||
jacobian_->addToBlock(globI, globI, bMat);
|
||||
// wells sources for now (should be moved out)
|
||||
if (well_local) {
|
||||
res = 0.0;
|
||||
bMat = 0.0;
|
||||
adres = 0.0;
|
||||
LocalResidual::computeSource(adres, problem_(), globI, 0);
|
||||
adres *= -volume;
|
||||
setResAndJacobi(res, bMat, adres);
|
||||
residual_[globI] += res;
|
||||
jacobian_->addToBlock(globI, globI, bMat);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Simulator *simulatorPtr_;
|
||||
|
||||
// the jacobian matrix
|
||||
std::unique_ptr<SparseMatrixAdapter> jacobian_;
|
||||
|
||||
// the right-hand side
|
||||
GlobalEqVector residual_;
|
||||
|
||||
LinearizationType linearizationType_;
|
||||
|
||||
struct NeighborInfo
|
||||
{
|
||||
unsigned int neighbor;
|
||||
double trans;
|
||||
double faceArea;
|
||||
};
|
||||
SparseTable<NeighborInfo> neighborInfo_;
|
||||
};
|
||||
|
||||
} // namespace Opm
|
||||
|
||||
#endif // TPFA_LINEARIZER
|
Loading…
Reference in New Issue
Block a user